Upload model
Browse files- README.md +199 -0
- config.json +26 -0
- configuration_relik.py +45 -0
- model.safetensors +3 -0
- modeling_relik.py +999 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,199 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            library_name: transformers
         | 
| 3 | 
            +
            tags: []
         | 
| 4 | 
            +
            ---
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # Model Card for Model ID
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            <!-- Provide a quick summary of what the model is/does. -->
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            ## Model Details
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            ### Model Description
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            <!-- Provide a longer summary of what this model is. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            - **Developed by:** [More Information Needed]
         | 
| 21 | 
            +
            - **Funded by [optional]:** [More Information Needed]
         | 
| 22 | 
            +
            - **Shared by [optional]:** [More Information Needed]
         | 
| 23 | 
            +
            - **Model type:** [More Information Needed]
         | 
| 24 | 
            +
            - **Language(s) (NLP):** [More Information Needed]
         | 
| 25 | 
            +
            - **License:** [More Information Needed]
         | 
| 26 | 
            +
            - **Finetuned from model [optional]:** [More Information Needed]
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ### Model Sources [optional]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            <!-- Provide the basic links for the model. -->
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            - **Repository:** [More Information Needed]
         | 
| 33 | 
            +
            - **Paper [optional]:** [More Information Needed]
         | 
| 34 | 
            +
            - **Demo [optional]:** [More Information Needed]
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Uses
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ### Direct Use
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            [More Information Needed]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ### Downstream Use [optional]
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            [More Information Needed]
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            ### Out-of-Scope Use
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            [More Information Needed]
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Bias, Risks, and Limitations
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            <!-- This section is meant to convey both technical and sociotechnical limitations. -->
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            [More Information Needed]
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ### Recommendations
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## How to Get Started with the Model
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            Use the code below to get started with the model.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            [More Information Needed]
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ## Training Details
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            ### Training Data
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            [More Information Needed]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ### Training Procedure
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            #### Preprocessing [optional]
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            [More Information Needed]
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            #### Training Hyperparameters
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            #### Speeds, Sizes, Times [optional]
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            [More Information Needed]
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ## Evaluation
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            <!-- This section describes the evaluation protocols and provides the results. -->
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            ### Testing Data, Factors & Metrics
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            #### Testing Data
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            <!-- This should link to a Dataset Card if possible. -->
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            [More Information Needed]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            #### Factors
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            [More Information Needed]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            #### Metrics
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            <!-- These are the evaluation metrics being used, ideally with a description of why. -->
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            [More Information Needed]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ### Results
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            [More Information Needed]
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            #### Summary
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
             | 
| 135 | 
            +
            ## Model Examination [optional]
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            <!-- Relevant interpretability work for the model goes here -->
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            [More Information Needed]
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            ## Environmental Impact
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            - **Hardware Type:** [More Information Needed]
         | 
| 148 | 
            +
            - **Hours used:** [More Information Needed]
         | 
| 149 | 
            +
            - **Cloud Provider:** [More Information Needed]
         | 
| 150 | 
            +
            - **Compute Region:** [More Information Needed]
         | 
| 151 | 
            +
            - **Carbon Emitted:** [More Information Needed]
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            ## Technical Specifications [optional]
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            ### Model Architecture and Objective
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            [More Information Needed]
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            ### Compute Infrastructure
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            [More Information Needed]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            #### Hardware
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            [More Information Needed]
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            #### Software
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            [More Information Needed]
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            ## Citation [optional]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            **BibTeX:**
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            [More Information Needed]
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            **APA:**
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            [More Information Needed]
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Glossary [optional]
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            [More Information Needed]
         | 
| 188 | 
            +
             | 
| 189 | 
            +
            ## More Information [optional]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            [More Information Needed]
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            ## Model Card Authors [optional]
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            [More Information Needed]
         | 
| 196 | 
            +
             | 
| 197 | 
            +
            ## Model Card Contact
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            [More Information Needed]
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,26 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/home/perelluis/relik/wandb/run-20240726_153730-lqxrgo7x/files/files",
         | 
| 3 | 
            +
              "activation": "gelu",
         | 
| 4 | 
            +
              "add_entity_embedding": null,
         | 
| 5 | 
            +
              "additional_special_symbols": 101,
         | 
| 6 | 
            +
              "additional_special_symbols_types": 0,
         | 
| 7 | 
            +
              "architectures": [
         | 
| 8 | 
            +
                "RelikReaderSpanModel"
         | 
| 9 | 
            +
              ],
         | 
| 10 | 
            +
              "auto_map": {
         | 
| 11 | 
            +
                "AutoConfig": "configuration_relik.RelikReaderConfig",
         | 
| 12 | 
            +
                "AutoModel": "modeling_relik.RelikReaderSpanModel"
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              "binary_end_logits": false,
         | 
| 15 | 
            +
              "default_reader_class": null,
         | 
| 16 | 
            +
              "entity_type_loss": false,
         | 
| 17 | 
            +
              "linears_hidden_size": 512,
         | 
| 18 | 
            +
              "model_type": "relik-reader",
         | 
| 19 | 
            +
              "num_layers": null,
         | 
| 20 | 
            +
              "threshold": 0.5,
         | 
| 21 | 
            +
              "torch_dtype": "float32",
         | 
| 22 | 
            +
              "training": true,
         | 
| 23 | 
            +
              "transformer_model": "microsoft/deberta-v3-large",
         | 
| 24 | 
            +
              "transformers_version": "4.41.2",
         | 
| 25 | 
            +
              "use_last_k_layers": 1
         | 
| 26 | 
            +
            }
         | 
    	
        configuration_relik.py
    ADDED
    
    | @@ -0,0 +1,45 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Optional
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import AutoConfig
         | 
| 4 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class RelikReaderConfig(PretrainedConfig):
         | 
| 8 | 
            +
                model_type = "relik-reader"
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                def __init__(
         | 
| 11 | 
            +
                    self,
         | 
| 12 | 
            +
                    transformer_model: str = "microsoft/deberta-v3-base",
         | 
| 13 | 
            +
                    additional_special_symbols: int = 101,
         | 
| 14 | 
            +
                    additional_special_symbols_types: Optional[int] = 0,
         | 
| 15 | 
            +
                    num_layers: Optional[int] = None,
         | 
| 16 | 
            +
                    activation: str = "gelu",
         | 
| 17 | 
            +
                    linears_hidden_size: Optional[int] = 512,
         | 
| 18 | 
            +
                    use_last_k_layers: int = 1,
         | 
| 19 | 
            +
                    entity_type_loss: bool = False,
         | 
| 20 | 
            +
                    add_entity_embedding: bool = None,
         | 
| 21 | 
            +
                    binary_end_logits: bool = False,
         | 
| 22 | 
            +
                    training: bool = False,
         | 
| 23 | 
            +
                    default_reader_class: Optional[str] = None,
         | 
| 24 | 
            +
                    threshold: Optional[float] = 0.5,
         | 
| 25 | 
            +
                    **kwargs
         | 
| 26 | 
            +
                ) -> None:
         | 
| 27 | 
            +
                    # TODO: add name_or_path to kwargs
         | 
| 28 | 
            +
                    self.transformer_model = transformer_model
         | 
| 29 | 
            +
                    self.additional_special_symbols = additional_special_symbols
         | 
| 30 | 
            +
                    self.additional_special_symbols_types = additional_special_symbols_types
         | 
| 31 | 
            +
                    self.num_layers = num_layers
         | 
| 32 | 
            +
                    self.activation = activation
         | 
| 33 | 
            +
                    self.linears_hidden_size = linears_hidden_size
         | 
| 34 | 
            +
                    self.use_last_k_layers = use_last_k_layers
         | 
| 35 | 
            +
                    self.entity_type_loss = entity_type_loss
         | 
| 36 | 
            +
                    self.add_entity_embedding = (
         | 
| 37 | 
            +
                        True
         | 
| 38 | 
            +
                        if add_entity_embedding is None and entity_type_loss
         | 
| 39 | 
            +
                        else add_entity_embedding
         | 
| 40 | 
            +
                    )
         | 
| 41 | 
            +
                    self.threshold = threshold
         | 
| 42 | 
            +
                    self.binary_end_logits = binary_end_logits
         | 
| 43 | 
            +
                    self.training = training
         | 
| 44 | 
            +
                    self.default_reader_class = default_reader_class
         | 
| 45 | 
            +
                    super().__init__(**kwargs)
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:62740e77b64cf6876bd9bd1aaac3f8353ef0a0c2b5b1f1cee652514410ca37c1
         | 
| 3 | 
            +
            size 1753333372
         | 
    	
        modeling_relik.py
    ADDED
    
    | @@ -0,0 +1,999 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Dict, Optional
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from transformers import AutoModel, PreTrainedModel
         | 
| 5 | 
            +
            from transformers.activations import ClippedGELUActivation, GELUActivation
         | 
| 6 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 7 | 
            +
            from transformers.modeling_utils import PoolerEndLogits
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from .configuration_relik import RelikReaderConfig
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class RelikReaderSample:
         | 
| 13 | 
            +
                def __init__(self, **kwargs):
         | 
| 14 | 
            +
                    super().__setattr__("_d", {})
         | 
| 15 | 
            +
                    self._d = kwargs
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def __getattribute__(self, item):
         | 
| 18 | 
            +
                    return super(RelikReaderSample, self).__getattribute__(item)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                def __getattr__(self, item):
         | 
| 21 | 
            +
                    if item.startswith("__") and item.endswith("__"):
         | 
| 22 | 
            +
                        # this is likely some python library-specific variable (such as __deepcopy__ for copy)
         | 
| 23 | 
            +
                        # better follow standard behavior here
         | 
| 24 | 
            +
                        raise AttributeError(item)
         | 
| 25 | 
            +
                    elif item in self._d:
         | 
| 26 | 
            +
                        return self._d[item]
         | 
| 27 | 
            +
                    else:
         | 
| 28 | 
            +
                        return None
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def __setattr__(self, key, value):
         | 
| 31 | 
            +
                    if key in self._d:
         | 
| 32 | 
            +
                        self._d[key] = value
         | 
| 33 | 
            +
                    else:
         | 
| 34 | 
            +
                        super().__setattr__(key, value)
         | 
| 35 | 
            +
                        self._d[key] = value
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            activation2functions = {
         | 
| 39 | 
            +
                "relu": torch.nn.ReLU(),
         | 
| 40 | 
            +
                "gelu": GELUActivation(),
         | 
| 41 | 
            +
                "gelu_10": ClippedGELUActivation(-10, 10),
         | 
| 42 | 
            +
            }
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            class PoolerEndLogitsBi(PoolerEndLogits):
         | 
| 46 | 
            +
                def __init__(self, config: PretrainedConfig):
         | 
| 47 | 
            +
                    super().__init__(config)
         | 
| 48 | 
            +
                    self.dense_1 = torch.nn.Linear(config.hidden_size, 2)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def forward(
         | 
| 51 | 
            +
                    self,
         | 
| 52 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 53 | 
            +
                    start_states: Optional[torch.FloatTensor] = None,
         | 
| 54 | 
            +
                    start_positions: Optional[torch.LongTensor] = None,
         | 
| 55 | 
            +
                    p_mask: Optional[torch.FloatTensor] = None,
         | 
| 56 | 
            +
                ) -> torch.FloatTensor:
         | 
| 57 | 
            +
                    if p_mask is not None:
         | 
| 58 | 
            +
                        p_mask = p_mask.unsqueeze(-1)
         | 
| 59 | 
            +
                    logits = super().forward(
         | 
| 60 | 
            +
                        hidden_states,
         | 
| 61 | 
            +
                        start_states,
         | 
| 62 | 
            +
                        start_positions,
         | 
| 63 | 
            +
                        p_mask,
         | 
| 64 | 
            +
                    )
         | 
| 65 | 
            +
                    return logits
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            class RelikReaderSpanModel(PreTrainedModel):
         | 
| 69 | 
            +
                config_class = RelikReaderConfig
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                def __init__(self, config: RelikReaderConfig, *args, **kwargs):
         | 
| 72 | 
            +
                    super().__init__(config)
         | 
| 73 | 
            +
                    # Transformer model declaration
         | 
| 74 | 
            +
                    self.config = config
         | 
| 75 | 
            +
                    self.transformer_model = (
         | 
| 76 | 
            +
                        AutoModel.from_pretrained(self.config.transformer_model)
         | 
| 77 | 
            +
                        if self.config.num_layers is None
         | 
| 78 | 
            +
                        else AutoModel.from_pretrained(
         | 
| 79 | 
            +
                            self.config.transformer_model, num_hidden_layers=self.config.num_layers
         | 
| 80 | 
            +
                        )
         | 
| 81 | 
            +
                    )
         | 
| 82 | 
            +
                    self.transformer_model.resize_token_embeddings(
         | 
| 83 | 
            +
                        self.transformer_model.config.vocab_size
         | 
| 84 | 
            +
                        + self.config.additional_special_symbols
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    self.activation = self.config.activation
         | 
| 88 | 
            +
                    self.linears_hidden_size = self.config.linears_hidden_size
         | 
| 89 | 
            +
                    self.use_last_k_layers = self.config.use_last_k_layers
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    # named entity detection layers
         | 
| 92 | 
            +
                    self.ned_start_classifier = self._get_projection_layer(
         | 
| 93 | 
            +
                        self.activation, last_hidden=2, layer_norm=False
         | 
| 94 | 
            +
                    )
         | 
| 95 | 
            +
                    if self.config.binary_end_logits:
         | 
| 96 | 
            +
                        self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        self.ned_end_classifier = PoolerEndLogits(self.transformer_model.config)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    # END entity disambiguation layer
         | 
| 101 | 
            +
                    self.ed_start_projector = self._get_projection_layer(self.activation)
         | 
| 102 | 
            +
                    self.ed_end_projector = self._get_projection_layer(self.activation)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    self.training = self.config.training
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # criterion
         | 
| 107 | 
            +
                    self.criterion = torch.nn.CrossEntropyLoss()
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def _get_projection_layer(
         | 
| 110 | 
            +
                    self,
         | 
| 111 | 
            +
                    activation: str,
         | 
| 112 | 
            +
                    last_hidden: Optional[int] = None,
         | 
| 113 | 
            +
                    input_hidden=None,
         | 
| 114 | 
            +
                    layer_norm: bool = True,
         | 
| 115 | 
            +
                ) -> torch.nn.Sequential:
         | 
| 116 | 
            +
                    head_components = [
         | 
| 117 | 
            +
                        torch.nn.Dropout(0.1),
         | 
| 118 | 
            +
                        torch.nn.Linear(
         | 
| 119 | 
            +
                            (
         | 
| 120 | 
            +
                                self.transformer_model.config.hidden_size * self.use_last_k_layers
         | 
| 121 | 
            +
                                if input_hidden is None
         | 
| 122 | 
            +
                                else input_hidden
         | 
| 123 | 
            +
                            ),
         | 
| 124 | 
            +
                            self.linears_hidden_size,
         | 
| 125 | 
            +
                        ),
         | 
| 126 | 
            +
                        activation2functions[activation],
         | 
| 127 | 
            +
                        torch.nn.Dropout(0.1),
         | 
| 128 | 
            +
                        torch.nn.Linear(
         | 
| 129 | 
            +
                            self.linears_hidden_size,
         | 
| 130 | 
            +
                            self.linears_hidden_size if last_hidden is None else last_hidden,
         | 
| 131 | 
            +
                        ),
         | 
| 132 | 
            +
                    ]
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    if layer_norm:
         | 
| 135 | 
            +
                        head_components.append(
         | 
| 136 | 
            +
                            torch.nn.LayerNorm(
         | 
| 137 | 
            +
                                self.linears_hidden_size if last_hidden is None else last_hidden,
         | 
| 138 | 
            +
                                self.transformer_model.config.layer_norm_eps,
         | 
| 139 | 
            +
                            )
         | 
| 140 | 
            +
                        )
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    return torch.nn.Sequential(*head_components)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
         | 
| 145 | 
            +
                    mask = mask.unsqueeze(-1)
         | 
| 146 | 
            +
                    if next(self.parameters()).dtype == torch.float16:
         | 
| 147 | 
            +
                        logits = logits * (1 - mask) - 65500 * mask
         | 
| 148 | 
            +
                    else:
         | 
| 149 | 
            +
                        logits = logits * (1 - mask) - 1e30 * mask
         | 
| 150 | 
            +
                    return logits
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def _get_model_features(
         | 
| 153 | 
            +
                    self,
         | 
| 154 | 
            +
                    input_ids: torch.Tensor,
         | 
| 155 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 156 | 
            +
                    token_type_ids: Optional[torch.Tensor],
         | 
| 157 | 
            +
                ):
         | 
| 158 | 
            +
                    model_input = {
         | 
| 159 | 
            +
                        "input_ids": input_ids,
         | 
| 160 | 
            +
                        "attention_mask": attention_mask,
         | 
| 161 | 
            +
                        "output_hidden_states": self.use_last_k_layers > 1,
         | 
| 162 | 
            +
                    }
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    if token_type_ids is not None:
         | 
| 165 | 
            +
                        model_input["token_type_ids"] = token_type_ids
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    model_output = self.transformer_model(**model_input)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    if self.use_last_k_layers > 1:
         | 
| 170 | 
            +
                        model_features = torch.cat(
         | 
| 171 | 
            +
                            model_output[1][-self.use_last_k_layers :], dim=-1
         | 
| 172 | 
            +
                        )
         | 
| 173 | 
            +
                    else:
         | 
| 174 | 
            +
                        model_features = model_output[0]
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    return model_features
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                def compute_ned_end_logits(
         | 
| 179 | 
            +
                    self,
         | 
| 180 | 
            +
                    start_predictions,
         | 
| 181 | 
            +
                    start_labels,
         | 
| 182 | 
            +
                    model_features,
         | 
| 183 | 
            +
                    prediction_mask,
         | 
| 184 | 
            +
                    batch_size,
         | 
| 185 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 186 | 
            +
                    # todo: maybe when constraining on the spans,
         | 
| 187 | 
            +
                    #  we should not use a prediction_mask for the end tokens.
         | 
| 188 | 
            +
                    #  at least we should not during training imo
         | 
| 189 | 
            +
                    start_positions = start_labels if self.training else start_predictions
         | 
| 190 | 
            +
                    start_positions_indices = (
         | 
| 191 | 
            +
                        torch.arange(start_positions.size(1), device=start_positions.device)
         | 
| 192 | 
            +
                        .unsqueeze(0)
         | 
| 193 | 
            +
                        .expand(batch_size, -1)[start_positions > 0]
         | 
| 194 | 
            +
                    ).to(start_positions.device)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    if len(start_positions_indices) > 0:
         | 
| 197 | 
            +
                        expanded_features = model_features.repeat_interleave(
         | 
| 198 | 
            +
                            torch.sum(start_positions > 0, dim=-1), dim=0
         | 
| 199 | 
            +
                        )
         | 
| 200 | 
            +
                        expanded_prediction_mask = prediction_mask.repeat_interleave(
         | 
| 201 | 
            +
                            torch.sum(start_positions > 0, dim=-1), dim=0
         | 
| 202 | 
            +
                        )
         | 
| 203 | 
            +
                        end_logits = self.ned_end_classifier(
         | 
| 204 | 
            +
                            hidden_states=expanded_features,
         | 
| 205 | 
            +
                            start_positions=start_positions_indices,
         | 
| 206 | 
            +
                            p_mask=expanded_prediction_mask,
         | 
| 207 | 
            +
                        )
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                        return end_logits
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    return None
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                def compute_classification_logits(
         | 
| 214 | 
            +
                    self,
         | 
| 215 | 
            +
                    model_features_start,
         | 
| 216 | 
            +
                    model_features_end,
         | 
| 217 | 
            +
                    special_symbols_features,
         | 
| 218 | 
            +
                ) -> torch.Tensor:
         | 
| 219 | 
            +
                    model_start_features = self.ed_start_projector(model_features_start)
         | 
| 220 | 
            +
                    model_end_features = self.ed_end_projector(model_features_end)
         | 
| 221 | 
            +
                    model_start_features_symbols = self.ed_start_projector(special_symbols_features)
         | 
| 222 | 
            +
                    model_end_features_symbols = self.ed_end_projector(special_symbols_features)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    model_ed_features = torch.cat(
         | 
| 225 | 
            +
                        [model_start_features, model_end_features], dim=-1
         | 
| 226 | 
            +
                    )
         | 
| 227 | 
            +
                    special_symbols_representation = torch.cat(
         | 
| 228 | 
            +
                        [model_start_features_symbols, model_end_features_symbols], dim=-1
         | 
| 229 | 
            +
                    )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    logits = torch.bmm(
         | 
| 232 | 
            +
                        model_ed_features,
         | 
| 233 | 
            +
                        torch.permute(special_symbols_representation, (0, 2, 1)),
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    logits = self._mask_logits(
         | 
| 237 | 
            +
                        logits, (model_features_start == -100).all(2).long()
         | 
| 238 | 
            +
                    )
         | 
| 239 | 
            +
                    return logits
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                def forward(
         | 
| 242 | 
            +
                    self,
         | 
| 243 | 
            +
                    input_ids: torch.Tensor,
         | 
| 244 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 245 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 246 | 
            +
                    prediction_mask: Optional[torch.Tensor] = None,
         | 
| 247 | 
            +
                    special_symbols_mask: Optional[torch.Tensor] = None,
         | 
| 248 | 
            +
                    start_labels: Optional[torch.Tensor] = None,
         | 
| 249 | 
            +
                    end_labels: Optional[torch.Tensor] = None,
         | 
| 250 | 
            +
                    use_predefined_spans: bool = False,
         | 
| 251 | 
            +
                    *args,
         | 
| 252 | 
            +
                    **kwargs,
         | 
| 253 | 
            +
                ) -> Dict[str, Any]:
         | 
| 254 | 
            +
                    batch_size, seq_len = input_ids.shape
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    model_features = self._get_model_features(
         | 
| 257 | 
            +
                        input_ids, attention_mask, token_type_ids
         | 
| 258 | 
            +
                    )
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    ned_start_labels = None
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    # named entity detection if required
         | 
| 263 | 
            +
                    if use_predefined_spans:  # no need to compute spans
         | 
| 264 | 
            +
                        ned_start_logits, ned_start_probabilities, ned_start_predictions = (
         | 
| 265 | 
            +
                            None,
         | 
| 266 | 
            +
                            None,
         | 
| 267 | 
            +
                            (
         | 
| 268 | 
            +
                                torch.clone(start_labels)
         | 
| 269 | 
            +
                                if start_labels is not None
         | 
| 270 | 
            +
                                else torch.zeros_like(input_ids)
         | 
| 271 | 
            +
                            ),
         | 
| 272 | 
            +
                        )
         | 
| 273 | 
            +
                        ned_end_logits, ned_end_probabilities, ned_end_predictions = (
         | 
| 274 | 
            +
                            None,
         | 
| 275 | 
            +
                            None,
         | 
| 276 | 
            +
                            (
         | 
| 277 | 
            +
                                torch.clone(end_labels)
         | 
| 278 | 
            +
                                if end_labels is not None
         | 
| 279 | 
            +
                                else torch.zeros_like(input_ids)
         | 
| 280 | 
            +
                            ),
         | 
| 281 | 
            +
                        )
         | 
| 282 | 
            +
                        ned_start_predictions[ned_start_predictions > 0] = 1
         | 
| 283 | 
            +
                        ned_end_predictions[end_labels > 0] = 1 
         | 
| 284 | 
            +
                        ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    else:  # compute spans
         | 
| 287 | 
            +
                        # start boundary prediction
         | 
| 288 | 
            +
                        ned_start_logits = self.ned_start_classifier(model_features)
         | 
| 289 | 
            +
                        ned_start_logits = self._mask_logits(ned_start_logits, prediction_mask)
         | 
| 290 | 
            +
                        ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
         | 
| 291 | 
            +
                        ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                        # end boundary prediction
         | 
| 294 | 
            +
                        ned_start_labels = (
         | 
| 295 | 
            +
                            torch.zeros_like(start_labels) if start_labels is not None else None
         | 
| 296 | 
            +
                        )
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                        if ned_start_labels is not None:
         | 
| 299 | 
            +
                            ned_start_labels[start_labels == -100] = -100
         | 
| 300 | 
            +
                            ned_start_labels[start_labels > 0] = 1
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                        ned_end_logits = self.compute_ned_end_logits(
         | 
| 303 | 
            +
                            ned_start_predictions,
         | 
| 304 | 
            +
                            ned_start_labels,
         | 
| 305 | 
            +
                            model_features,
         | 
| 306 | 
            +
                            prediction_mask,
         | 
| 307 | 
            +
                            batch_size,
         | 
| 308 | 
            +
                        )
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                        if ned_end_logits is not None:
         | 
| 311 | 
            +
                            ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
         | 
| 312 | 
            +
                            if not self.config.binary_end_logits:
         | 
| 313 | 
            +
                                ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1, keepdim=True)
         | 
| 314 | 
            +
                                ned_end_predictions = torch.zeros_like(ned_end_probabilities).scatter_(1, ned_end_predictions, 1)
         | 
| 315 | 
            +
                            else:
         | 
| 316 | 
            +
                                ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1)
         | 
| 317 | 
            +
                        else:
         | 
| 318 | 
            +
                            ned_end_logits, ned_end_probabilities = None, None
         | 
| 319 | 
            +
                            ned_end_predictions = ned_start_predictions.new_zeros(batch_size, seq_len)
         | 
| 320 | 
            +
                            
         | 
| 321 | 
            +
                        if not self.training:
         | 
| 322 | 
            +
                            # if len(ned_end_predictions.shape) < 2:
         | 
| 323 | 
            +
                            #     print(ned_end_predictions)
         | 
| 324 | 
            +
                            end_preds_count = ned_end_predictions.sum(1)
         | 
| 325 | 
            +
                            # If there are no end predictions for a start prediction, remove the start prediction
         | 
| 326 | 
            +
                            if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
         | 
| 327 | 
            +
                                ned_start_predictions[ned_start_predictions == 1] = (
         | 
| 328 | 
            +
                                    end_preds_count != 0
         | 
| 329 | 
            +
                                ).long()
         | 
| 330 | 
            +
                                ned_end_predictions = ned_end_predictions[end_preds_count != 0]
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    if end_labels is not None:
         | 
| 333 | 
            +
                        end_labels = end_labels[~(end_labels == -100).all(2)]
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    start_position, end_position = (
         | 
| 336 | 
            +
                        (start_labels, end_labels)
         | 
| 337 | 
            +
                        if self.training
         | 
| 338 | 
            +
                        else (ned_start_predictions, ned_end_predictions)
         | 
| 339 | 
            +
                    )
         | 
| 340 | 
            +
                    start_counts = (start_position > 0).sum(1)
         | 
| 341 | 
            +
                    if (start_counts > 0).any():
         | 
| 342 | 
            +
                        ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
         | 
| 343 | 
            +
                    # Entity disambiguation
         | 
| 344 | 
            +
                    if (end_position > 0).sum() > 0:
         | 
| 345 | 
            +
                        ends_count = (end_position > 0).sum(1)
         | 
| 346 | 
            +
                        model_entity_start = torch.repeat_interleave(
         | 
| 347 | 
            +
                                    model_features[start_position > 0], ends_count, dim=0
         | 
| 348 | 
            +
                                )
         | 
| 349 | 
            +
                        model_entity_end = torch.repeat_interleave(
         | 
| 350 | 
            +
                                    model_features, start_counts, dim=0)[
         | 
| 351 | 
            +
                                    end_position > 0
         | 
| 352 | 
            +
                                ]
         | 
| 353 | 
            +
                        ents_count = torch.nn.utils.rnn.pad_sequence(
         | 
| 354 | 
            +
                            torch.split(ends_count, start_counts.tolist()),
         | 
| 355 | 
            +
                            batch_first=True,
         | 
| 356 | 
            +
                            padding_value=0,
         | 
| 357 | 
            +
                        ).sum(1)
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                        model_entity_start = torch.nn.utils.rnn.pad_sequence(
         | 
| 360 | 
            +
                            torch.split(model_entity_start, ents_count.tolist()),
         | 
| 361 | 
            +
                            batch_first=True,
         | 
| 362 | 
            +
                            padding_value=-100,
         | 
| 363 | 
            +
                        )
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                        model_entity_end = torch.nn.utils.rnn.pad_sequence(
         | 
| 366 | 
            +
                            torch.split(model_entity_end, ents_count.tolist()),
         | 
| 367 | 
            +
                            batch_first=True,
         | 
| 368 | 
            +
                            padding_value=-100,
         | 
| 369 | 
            +
                        )
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                        ed_logits = self.compute_classification_logits(
         | 
| 372 | 
            +
                            model_entity_start,
         | 
| 373 | 
            +
                            model_entity_end,
         | 
| 374 | 
            +
                            model_features[special_symbols_mask].view(
         | 
| 375 | 
            +
                                batch_size, -1, model_features.shape[-1]
         | 
| 376 | 
            +
                            ),
         | 
| 377 | 
            +
                        )
         | 
| 378 | 
            +
                        ed_probabilities = torch.softmax(ed_logits, dim=-1)
         | 
| 379 | 
            +
                        ed_predictions = torch.argmax(ed_probabilities, dim=-1)
         | 
| 380 | 
            +
                    else:
         | 
| 381 | 
            +
                        ed_logits, ed_probabilities, ed_predictions = (
         | 
| 382 | 
            +
                            None, 
         | 
| 383 | 
            +
                            ned_start_predictions.new_zeros(batch_size, seq_len),
         | 
| 384 | 
            +
                            ned_start_predictions.new_zeros(batch_size),
         | 
| 385 | 
            +
                        )
         | 
| 386 | 
            +
                    # output build
         | 
| 387 | 
            +
                    output_dict = dict(
         | 
| 388 | 
            +
                        batch_size=batch_size,
         | 
| 389 | 
            +
                        ned_start_logits=ned_start_logits,
         | 
| 390 | 
            +
                        ned_start_probabilities=ned_start_probabilities,
         | 
| 391 | 
            +
                        ned_start_predictions=ned_start_predictions,
         | 
| 392 | 
            +
                        ned_end_logits=ned_end_logits,
         | 
| 393 | 
            +
                        ned_end_probabilities=ned_end_probabilities,
         | 
| 394 | 
            +
                        ned_end_predictions=ned_end_predictions,
         | 
| 395 | 
            +
                        ed_logits=ed_logits,
         | 
| 396 | 
            +
                        ed_probabilities=ed_probabilities,
         | 
| 397 | 
            +
                        ed_predictions=ed_predictions,
         | 
| 398 | 
            +
                    )
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    # compute loss if labels
         | 
| 401 | 
            +
                    if start_labels is not None and end_labels is not None and self.training:
         | 
| 402 | 
            +
                        # named entity detection loss
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        # start
         | 
| 405 | 
            +
                        if ned_start_logits is not None:
         | 
| 406 | 
            +
                            ned_start_loss = self.criterion(
         | 
| 407 | 
            +
                                ned_start_logits.view(-1, ned_start_logits.shape[-1]),
         | 
| 408 | 
            +
                                ned_start_labels.view(-1),
         | 
| 409 | 
            +
                            )
         | 
| 410 | 
            +
                        else:
         | 
| 411 | 
            +
                            ned_start_loss = 0
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                        # end
         | 
| 414 | 
            +
                        # use ents_count to assign the labels to the correct positions i.e. using end_labels -> [[0,0,4,0], [0,0,0,2]] -> [4,2] (this is just an element, for batch we need to mask it with ents_count), ie -> [[4,2,-100,-100], [3,1,2,-100], [1,3,2,5]]
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                        if ned_end_logits is not None:
         | 
| 417 | 
            +
                            ed_labels = end_labels.clone()
         | 
| 418 | 
            +
                            ed_labels = torch.nn.utils.rnn.pad_sequence(
         | 
| 419 | 
            +
                                torch.split(ed_labels[ed_labels > 0], ents_count.tolist()),
         | 
| 420 | 
            +
                                batch_first=True,
         | 
| 421 | 
            +
                                padding_value=-100,
         | 
| 422 | 
            +
                            )
         | 
| 423 | 
            +
                            end_labels[end_labels > 0] = 1
         | 
| 424 | 
            +
                            if not self.config.binary_end_logits:
         | 
| 425 | 
            +
                                # transform label to position in the sequence
         | 
| 426 | 
            +
                                end_labels = end_labels.argmax(dim=-1)
         | 
| 427 | 
            +
                                ned_end_loss = self.criterion(
         | 
| 428 | 
            +
                                    ned_end_logits.view(-1, ned_end_logits.shape[-1]),
         | 
| 429 | 
            +
                                    end_labels.view(-1),
         | 
| 430 | 
            +
                                )
         | 
| 431 | 
            +
                            else:
         | 
| 432 | 
            +
                                ned_end_loss = self.criterion(ned_end_logits.reshape(-1, ned_end_logits.shape[-1]), end_labels.reshape(-1).long())
         | 
| 433 | 
            +
                            
         | 
| 434 | 
            +
                            # entity disambiguation loss
         | 
| 435 | 
            +
                            ed_loss = self.criterion(
         | 
| 436 | 
            +
                                ed_logits.view(-1, ed_logits.shape[-1]),
         | 
| 437 | 
            +
                                ed_labels.view(-1).long(),
         | 
| 438 | 
            +
                            )
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                        else:
         | 
| 441 | 
            +
                            ned_end_loss = 0
         | 
| 442 | 
            +
                            ed_loss = 0
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                        output_dict["ned_start_loss"] = ned_start_loss
         | 
| 445 | 
            +
                        output_dict["ned_end_loss"] = ned_end_loss
         | 
| 446 | 
            +
                        output_dict["ed_loss"] = ed_loss
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                        output_dict["loss"] = ned_start_loss + ned_end_loss + ed_loss
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    return output_dict
         | 
| 451 | 
            +
             | 
| 452 | 
            +
             | 
| 453 | 
            +
            class RelikReaderREModel(PreTrainedModel):
         | 
| 454 | 
            +
                config_class = RelikReaderConfig
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                def __init__(self, config, *args, **kwargs):
         | 
| 457 | 
            +
                    super().__init__(config)
         | 
| 458 | 
            +
                    # Transformer model declaration
         | 
| 459 | 
            +
                    # self.transformer_model_name = transformer_model
         | 
| 460 | 
            +
                    self.config = config
         | 
| 461 | 
            +
                    self.transformer_model = (
         | 
| 462 | 
            +
                        AutoModel.from_pretrained(config.transformer_model)
         | 
| 463 | 
            +
                        if config.num_layers is None
         | 
| 464 | 
            +
                        else AutoModel.from_pretrained(
         | 
| 465 | 
            +
                            config.transformer_model, num_hidden_layers=config.num_layers
         | 
| 466 | 
            +
                        )
         | 
| 467 | 
            +
                    )
         | 
| 468 | 
            +
                    self.transformer_model.resize_token_embeddings(
         | 
| 469 | 
            +
                        self.transformer_model.config.vocab_size
         | 
| 470 | 
            +
                        + config.additional_special_symbols
         | 
| 471 | 
            +
                        + config.additional_special_symbols_types,
         | 
| 472 | 
            +
                    )
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    # named entity detection layers
         | 
| 475 | 
            +
                    self.ned_start_classifier = self._get_projection_layer(
         | 
| 476 | 
            +
                        config.activation, last_hidden=2, layer_norm=False
         | 
| 477 | 
            +
                    )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    self.relation_disambiguation_loss = (
         | 
| 482 | 
            +
                        config.relation_disambiguation_loss
         | 
| 483 | 
            +
                        if hasattr(config, "relation_disambiguation_loss")
         | 
| 484 | 
            +
                        else False
         | 
| 485 | 
            +
                    )
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    if self.config.entity_type_loss and self.config.add_entity_embedding:
         | 
| 488 | 
            +
                        input_hidden_ents = 3
         | 
| 489 | 
            +
                    else:
         | 
| 490 | 
            +
                        input_hidden_ents = 2
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    self.re_projector = self._get_projection_layer(
         | 
| 493 | 
            +
                        config.activation,
         | 
| 494 | 
            +
                        input_hidden=input_hidden_ents * self.transformer_model.config.hidden_size,
         | 
| 495 | 
            +
                        hidden=input_hidden_ents * self.config.linears_hidden_size,
         | 
| 496 | 
            +
                        last_hidden=2 * self.config.linears_hidden_size,
         | 
| 497 | 
            +
                    )
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    self.re_relation_projector = self._get_projection_layer(
         | 
| 500 | 
            +
                        config.activation,
         | 
| 501 | 
            +
                        input_hidden=self.transformer_model.config.hidden_size,
         | 
| 502 | 
            +
                    )
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    if self.config.entity_type_loss or self.relation_disambiguation_loss:
         | 
| 505 | 
            +
                        self.re_entities_projector = self._get_projection_layer(
         | 
| 506 | 
            +
                            config.activation,
         | 
| 507 | 
            +
                            input_hidden=2 * self.transformer_model.config.hidden_size,
         | 
| 508 | 
            +
                        )
         | 
| 509 | 
            +
                        self.re_definition_projector = self._get_projection_layer(
         | 
| 510 | 
            +
                            config.activation,
         | 
| 511 | 
            +
                        )
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    self.re_classifier = self._get_projection_layer(
         | 
| 514 | 
            +
                        config.activation,
         | 
| 515 | 
            +
                        input_hidden=config.linears_hidden_size,
         | 
| 516 | 
            +
                        last_hidden=2,
         | 
| 517 | 
            +
                        layer_norm=False,
         | 
| 518 | 
            +
                    )
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                    self.training = config.training
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    # criterion
         | 
| 523 | 
            +
                    self.criterion = torch.nn.CrossEntropyLoss()
         | 
| 524 | 
            +
                    self.criterion_type = torch.nn.BCEWithLogitsLoss()
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                def _get_projection_layer(
         | 
| 527 | 
            +
                    self,
         | 
| 528 | 
            +
                    activation: str,
         | 
| 529 | 
            +
                    last_hidden: Optional[int] = None,
         | 
| 530 | 
            +
                    hidden: Optional[int] = None,
         | 
| 531 | 
            +
                    input_hidden=None,
         | 
| 532 | 
            +
                    layer_norm: bool = True,
         | 
| 533 | 
            +
                ) -> torch.nn.Sequential:
         | 
| 534 | 
            +
                    head_components = [
         | 
| 535 | 
            +
                        torch.nn.Dropout(0.1),
         | 
| 536 | 
            +
                        torch.nn.Linear(
         | 
| 537 | 
            +
                            (
         | 
| 538 | 
            +
                                self.transformer_model.config.hidden_size
         | 
| 539 | 
            +
                                * self.config.use_last_k_layers
         | 
| 540 | 
            +
                                if input_hidden is None
         | 
| 541 | 
            +
                                else input_hidden
         | 
| 542 | 
            +
                            ),
         | 
| 543 | 
            +
                            self.config.linears_hidden_size if hidden is None else hidden,
         | 
| 544 | 
            +
                        ),
         | 
| 545 | 
            +
                        activation2functions[activation],
         | 
| 546 | 
            +
                        torch.nn.Dropout(0.1),
         | 
| 547 | 
            +
                        torch.nn.Linear(
         | 
| 548 | 
            +
                            self.config.linears_hidden_size if hidden is None else hidden,
         | 
| 549 | 
            +
                            self.config.linears_hidden_size if last_hidden is None else last_hidden,
         | 
| 550 | 
            +
                        ),
         | 
| 551 | 
            +
                    ]
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    if layer_norm:
         | 
| 554 | 
            +
                        head_components.append(
         | 
| 555 | 
            +
                            torch.nn.LayerNorm(
         | 
| 556 | 
            +
                                (
         | 
| 557 | 
            +
                                    self.config.linears_hidden_size
         | 
| 558 | 
            +
                                    if last_hidden is None
         | 
| 559 | 
            +
                                    else last_hidden
         | 
| 560 | 
            +
                                ),
         | 
| 561 | 
            +
                                self.transformer_model.config.layer_norm_eps,
         | 
| 562 | 
            +
                            )
         | 
| 563 | 
            +
                        )
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    return torch.nn.Sequential(*head_components)
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
         | 
| 568 | 
            +
                    mask = mask.unsqueeze(-1)
         | 
| 569 | 
            +
                    if next(self.parameters()).dtype == torch.float16:
         | 
| 570 | 
            +
                        logits = logits * (1 - mask) - 65500 * mask
         | 
| 571 | 
            +
                    else:
         | 
| 572 | 
            +
                        logits = logits * (1 - mask) - 1e30 * mask
         | 
| 573 | 
            +
                    return logits
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                def _get_model_features(
         | 
| 576 | 
            +
                    self,
         | 
| 577 | 
            +
                    input_ids: torch.Tensor,
         | 
| 578 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 579 | 
            +
                    token_type_ids: Optional[torch.Tensor],
         | 
| 580 | 
            +
                ):
         | 
| 581 | 
            +
                    model_input = {
         | 
| 582 | 
            +
                        "input_ids": input_ids,
         | 
| 583 | 
            +
                        "attention_mask": attention_mask,
         | 
| 584 | 
            +
                        "output_hidden_states": self.config.use_last_k_layers > 1,
         | 
| 585 | 
            +
                    }
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    if token_type_ids is not None:
         | 
| 588 | 
            +
                        model_input["token_type_ids"] = token_type_ids
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    model_output = self.transformer_model(**model_input)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    if self.config.use_last_k_layers > 1:
         | 
| 593 | 
            +
                        model_features = torch.cat(
         | 
| 594 | 
            +
                            model_output[1][-self.config.use_last_k_layers :], dim=-1
         | 
| 595 | 
            +
                        )
         | 
| 596 | 
            +
                    else:
         | 
| 597 | 
            +
                        model_features = model_output[0]
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    return model_features
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                def compute_ned_end_logits(
         | 
| 602 | 
            +
                    self,
         | 
| 603 | 
            +
                    start_predictions,
         | 
| 604 | 
            +
                    start_labels,
         | 
| 605 | 
            +
                    model_features,
         | 
| 606 | 
            +
                    prediction_mask,
         | 
| 607 | 
            +
                    batch_size,
         | 
| 608 | 
            +
                    mask_preceding: bool = False,
         | 
| 609 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 610 | 
            +
                    # todo: maybe when constraining on the spans,
         | 
| 611 | 
            +
                    #  we should not use a prediction_mask for the end tokens.
         | 
| 612 | 
            +
                    #  at least we should not during training imo
         | 
| 613 | 
            +
                    start_positions = start_labels if self.training else start_predictions
         | 
| 614 | 
            +
                    start_positions_indices = (
         | 
| 615 | 
            +
                        torch.arange(start_positions.size(1), device=start_positions.device)
         | 
| 616 | 
            +
                        .unsqueeze(0)
         | 
| 617 | 
            +
                        .expand(batch_size, -1)[start_positions > 0]
         | 
| 618 | 
            +
                    ).to(start_positions.device)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    if len(start_positions_indices) > 0:
         | 
| 621 | 
            +
                        expanded_features = model_features.repeat_interleave(
         | 
| 622 | 
            +
                            torch.sum(start_positions > 0, dim=-1), dim=0
         | 
| 623 | 
            +
                        )
         | 
| 624 | 
            +
                        expanded_prediction_mask = prediction_mask.repeat_interleave(
         | 
| 625 | 
            +
                            torch.sum(start_positions > 0, dim=-1), dim=0
         | 
| 626 | 
            +
                        )
         | 
| 627 | 
            +
                        if mask_preceding:
         | 
| 628 | 
            +
                            expanded_prediction_mask[
         | 
| 629 | 
            +
                                torch.arange(
         | 
| 630 | 
            +
                                    expanded_prediction_mask.shape[1],
         | 
| 631 | 
            +
                                    device=expanded_prediction_mask.device,
         | 
| 632 | 
            +
                                )
         | 
| 633 | 
            +
                                < start_positions_indices.unsqueeze(1)
         | 
| 634 | 
            +
                            ] = 1
         | 
| 635 | 
            +
                        end_logits = self.ned_end_classifier(
         | 
| 636 | 
            +
                            hidden_states=expanded_features,
         | 
| 637 | 
            +
                            start_positions=start_positions_indices,
         | 
| 638 | 
            +
                            p_mask=expanded_prediction_mask,
         | 
| 639 | 
            +
                        )
         | 
| 640 | 
            +
             | 
| 641 | 
            +
                        return end_logits
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                    return None
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                def compute_relation_logits(
         | 
| 646 | 
            +
                    self,
         | 
| 647 | 
            +
                    model_entity_features,
         | 
| 648 | 
            +
                    special_symbols_features,
         | 
| 649 | 
            +
                ) -> torch.Tensor:
         | 
| 650 | 
            +
                    model_subject_object_features = self.re_projector(model_entity_features)
         | 
| 651 | 
            +
                    model_subject_features = model_subject_object_features[
         | 
| 652 | 
            +
                        :, :, : model_subject_object_features.shape[-1] // 2
         | 
| 653 | 
            +
                    ]
         | 
| 654 | 
            +
                    model_object_features = model_subject_object_features[
         | 
| 655 | 
            +
                        :, :, model_subject_object_features.shape[-1] // 2 :
         | 
| 656 | 
            +
                    ]
         | 
| 657 | 
            +
                    special_symbols_start_representation = self.re_relation_projector(
         | 
| 658 | 
            +
                        special_symbols_features
         | 
| 659 | 
            +
                    )
         | 
| 660 | 
            +
                    re_logits = torch.einsum(
         | 
| 661 | 
            +
                        "bse,bde,bfe->bsdfe",
         | 
| 662 | 
            +
                        model_subject_features,
         | 
| 663 | 
            +
                        model_object_features,
         | 
| 664 | 
            +
                        special_symbols_start_representation,
         | 
| 665 | 
            +
                    )
         | 
| 666 | 
            +
                    re_logits = self.re_classifier(re_logits)
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    return re_logits
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                def compute_entity_logits(
         | 
| 671 | 
            +
                    self,
         | 
| 672 | 
            +
                    model_entity_features,
         | 
| 673 | 
            +
                    special_symbols_features,
         | 
| 674 | 
            +
                ) -> torch.Tensor:
         | 
| 675 | 
            +
                    model_ed_features = self.re_entities_projector(model_entity_features)
         | 
| 676 | 
            +
                    special_symbols_ed_representation = self.re_definition_projector(
         | 
| 677 | 
            +
                        special_symbols_features
         | 
| 678 | 
            +
                    )
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    logits = torch.bmm(
         | 
| 681 | 
            +
                        model_ed_features,
         | 
| 682 | 
            +
                        torch.permute(special_symbols_ed_representation, (0, 2, 1)),
         | 
| 683 | 
            +
                    )
         | 
| 684 | 
            +
                    logits = self._mask_logits(
         | 
| 685 | 
            +
                        logits, (model_entity_features == -100).all(2).long()
         | 
| 686 | 
            +
                    )
         | 
| 687 | 
            +
                    return logits
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                def compute_loss(self, logits, labels, mask=None):
         | 
| 690 | 
            +
                    logits = logits.reshape(-1, logits.shape[-1])
         | 
| 691 | 
            +
                    labels = labels.reshape(-1).long()
         | 
| 692 | 
            +
                    if mask is not None:
         | 
| 693 | 
            +
                        return self.criterion(logits[mask], labels[mask])
         | 
| 694 | 
            +
                    return self.criterion(logits, labels)
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                def compute_ned_type_loss(
         | 
| 697 | 
            +
                    self,
         | 
| 698 | 
            +
                    disambiguation_labels,
         | 
| 699 | 
            +
                    re_ned_entities_logits,
         | 
| 700 | 
            +
                    ned_type_logits,
         | 
| 701 | 
            +
                    re_entities_logits,
         | 
| 702 | 
            +
                    entity_types,
         | 
| 703 | 
            +
                    mask,
         | 
| 704 | 
            +
                ):
         | 
| 705 | 
            +
                    if self.config.entity_type_loss and self.relation_disambiguation_loss:
         | 
| 706 | 
            +
                        return self.criterion_type(
         | 
| 707 | 
            +
                            re_ned_entities_logits[disambiguation_labels != -100],
         | 
| 708 | 
            +
                            disambiguation_labels[disambiguation_labels != -100],
         | 
| 709 | 
            +
                        )
         | 
| 710 | 
            +
                    if self.config.entity_type_loss:
         | 
| 711 | 
            +
                        return self.criterion_type(
         | 
| 712 | 
            +
                            ned_type_logits[mask],
         | 
| 713 | 
            +
                            disambiguation_labels[:, :, :entity_types][mask],
         | 
| 714 | 
            +
                        )
         | 
| 715 | 
            +
             | 
| 716 | 
            +
                    if self.relation_disambiguation_loss:
         | 
| 717 | 
            +
                        return self.criterion_type(
         | 
| 718 | 
            +
                            re_entities_logits[disambiguation_labels != -100],
         | 
| 719 | 
            +
                            disambiguation_labels[disambiguation_labels != -100],
         | 
| 720 | 
            +
                        )
         | 
| 721 | 
            +
                    return 0
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                def compute_relation_loss(self, relation_labels, re_logits):
         | 
| 724 | 
            +
                    return self.compute_loss(
         | 
| 725 | 
            +
                        re_logits, relation_labels, relation_labels.view(-1) != -100
         | 
| 726 | 
            +
                    )
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                def forward(
         | 
| 729 | 
            +
                    self,
         | 
| 730 | 
            +
                    input_ids: torch.Tensor,
         | 
| 731 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 732 | 
            +
                    token_type_ids: torch.Tensor,
         | 
| 733 | 
            +
                    prediction_mask: Optional[torch.Tensor] = None,
         | 
| 734 | 
            +
                    special_symbols_mask: Optional[torch.Tensor] = None,
         | 
| 735 | 
            +
                    special_symbols_mask_entities: Optional[torch.Tensor] = None,
         | 
| 736 | 
            +
                    start_labels: Optional[torch.Tensor] = None,
         | 
| 737 | 
            +
                    end_labels: Optional[torch.Tensor] = None,
         | 
| 738 | 
            +
                    disambiguation_labels: Optional[torch.Tensor] = None,
         | 
| 739 | 
            +
                    relation_labels: Optional[torch.Tensor] = None,
         | 
| 740 | 
            +
                    relation_threshold: float = None,
         | 
| 741 | 
            +
                    is_validation: bool = False,
         | 
| 742 | 
            +
                    is_prediction: bool = False,
         | 
| 743 | 
            +
                    use_predefined_spans: bool = False,
         | 
| 744 | 
            +
                    *args,
         | 
| 745 | 
            +
                    **kwargs,
         | 
| 746 | 
            +
                ) -> Dict[str, Any]:
         | 
| 747 | 
            +
                    relation_threshold = (
         | 
| 748 | 
            +
                        self.config.threshold if relation_threshold is None else relation_threshold
         | 
| 749 | 
            +
                    )
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                    batch_size = input_ids.shape[0]
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    model_features = self._get_model_features(
         | 
| 754 | 
            +
                        input_ids, attention_mask, token_type_ids
         | 
| 755 | 
            +
                    )
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    # named entity detection
         | 
| 758 | 
            +
                    if use_predefined_spans:
         | 
| 759 | 
            +
                        ned_start_logits, ned_start_probabilities, ned_start_predictions = (
         | 
| 760 | 
            +
                            None,
         | 
| 761 | 
            +
                            None,
         | 
| 762 | 
            +
                            torch.zeros_like(start_labels),
         | 
| 763 | 
            +
                        )
         | 
| 764 | 
            +
                        ned_end_logits, ned_end_probabilities, ned_end_predictions = (
         | 
| 765 | 
            +
                            None,
         | 
| 766 | 
            +
                            None,
         | 
| 767 | 
            +
                            torch.zeros_like(end_labels),
         | 
| 768 | 
            +
                        )
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                        ned_start_predictions[start_labels > 0] = 1
         | 
| 771 | 
            +
                        ned_end_predictions[end_labels > 0] = 1
         | 
| 772 | 
            +
                        ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
         | 
| 773 | 
            +
                        ned_start_labels = start_labels
         | 
| 774 | 
            +
                        ned_start_labels[start_labels > 0] = 1
         | 
| 775 | 
            +
                    else:
         | 
| 776 | 
            +
                        # start boundary prediction
         | 
| 777 | 
            +
                        ned_start_logits = self.ned_start_classifier(model_features)
         | 
| 778 | 
            +
                        if is_validation or is_prediction:
         | 
| 779 | 
            +
                            ned_start_logits = self._mask_logits(
         | 
| 780 | 
            +
                                ned_start_logits, prediction_mask
         | 
| 781 | 
            +
                            )  # why?
         | 
| 782 | 
            +
                        ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
         | 
| 783 | 
            +
                        ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
         | 
| 784 | 
            +
             | 
| 785 | 
            +
                        # end boundary prediction
         | 
| 786 | 
            +
                        ned_start_labels = (
         | 
| 787 | 
            +
                            torch.zeros_like(start_labels) if start_labels is not None else None
         | 
| 788 | 
            +
                        )
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                        # start_labels contain entity id at their position, we just need 1 for start of entity
         | 
| 791 | 
            +
                        if ned_start_labels is not None:
         | 
| 792 | 
            +
                            ned_start_labels[start_labels == -100] = -100
         | 
| 793 | 
            +
                            ned_start_labels[start_labels > 0] = 1
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                        # compute end logits only if there are any start predictions.
         | 
| 796 | 
            +
                        # For each start prediction, n end predictions are made
         | 
| 797 | 
            +
                        ned_end_logits = self.compute_ned_end_logits(
         | 
| 798 | 
            +
                            ned_start_predictions,
         | 
| 799 | 
            +
                            ned_start_labels,
         | 
| 800 | 
            +
                            model_features,
         | 
| 801 | 
            +
                            prediction_mask,
         | 
| 802 | 
            +
                            batch_size,
         | 
| 803 | 
            +
                            True,
         | 
| 804 | 
            +
                        )
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                        if ned_end_logits is not None:
         | 
| 807 | 
            +
                            # For each start prediction, n end predictions are made based on
         | 
| 808 | 
            +
                            # binary classification ie. argmax at each position.
         | 
| 809 | 
            +
                            ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
         | 
| 810 | 
            +
                            ned_end_predictions = ned_end_probabilities.argmax(dim=-1)
         | 
| 811 | 
            +
                        else:
         | 
| 812 | 
            +
                            ned_end_logits, ned_end_probabilities = None, None
         | 
| 813 | 
            +
                            ned_end_predictions = torch.zeros_like(ned_start_predictions)
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                        if is_prediction or is_validation:
         | 
| 816 | 
            +
                            end_preds_count = ned_end_predictions.sum(1)
         | 
| 817 | 
            +
                            # If there are no end predictions for a start prediction, remove the start prediction
         | 
| 818 | 
            +
                            if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
         | 
| 819 | 
            +
                                ned_start_predictions[ned_start_predictions == 1] = (
         | 
| 820 | 
            +
                                    end_preds_count != 0
         | 
| 821 | 
            +
                                ).long()
         | 
| 822 | 
            +
                                ned_end_predictions = ned_end_predictions[end_preds_count != 0]
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                    if end_labels is not None:
         | 
| 825 | 
            +
                        end_labels = end_labels[~(end_labels == -100).all(2)]
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                    start_position, end_position = (
         | 
| 828 | 
            +
                        (start_labels, end_labels)
         | 
| 829 | 
            +
                        if (not is_prediction and not is_validation)
         | 
| 830 | 
            +
                        else (ned_start_predictions, ned_end_predictions)
         | 
| 831 | 
            +
                    )
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    start_counts = (start_position > 0).sum(1)
         | 
| 834 | 
            +
                    if (start_counts > 0).any():
         | 
| 835 | 
            +
                        ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
         | 
| 836 | 
            +
                    # limit to 30 predictions per document using start_counts, by setting all po after sum is 30 to 0
         | 
| 837 | 
            +
                    # if is_validation or is_prediction:
         | 
| 838 | 
            +
                    #     ned_start_predictions[ned_start_predictions == 1] = start_counts
         | 
| 839 | 
            +
                    # We can only predict relations if we have start and end predictions
         | 
| 840 | 
            +
                    if (end_position > 0).sum() > 0:
         | 
| 841 | 
            +
                        ends_count = (end_position > 0).sum(1)
         | 
| 842 | 
            +
                        model_subject_features = torch.cat(
         | 
| 843 | 
            +
                            [
         | 
| 844 | 
            +
                                torch.repeat_interleave(
         | 
| 845 | 
            +
                                    model_features[start_position > 0], ends_count, dim=0
         | 
| 846 | 
            +
                                ),  # start position features
         | 
| 847 | 
            +
                                torch.repeat_interleave(model_features, start_counts, dim=0)[
         | 
| 848 | 
            +
                                    end_position > 0
         | 
| 849 | 
            +
                                ],  # end position features
         | 
| 850 | 
            +
                            ],
         | 
| 851 | 
            +
                            dim=-1,
         | 
| 852 | 
            +
                        )
         | 
| 853 | 
            +
                        ents_count = torch.nn.utils.rnn.pad_sequence(
         | 
| 854 | 
            +
                            torch.split(ends_count, start_counts.tolist()),
         | 
| 855 | 
            +
                            batch_first=True,
         | 
| 856 | 
            +
                            padding_value=0,
         | 
| 857 | 
            +
                        ).sum(1)
         | 
| 858 | 
            +
                        model_subject_features = torch.nn.utils.rnn.pad_sequence(
         | 
| 859 | 
            +
                            torch.split(model_subject_features, ents_count.tolist()),
         | 
| 860 | 
            +
                            batch_first=True,
         | 
| 861 | 
            +
                            padding_value=-100,
         | 
| 862 | 
            +
                        )
         | 
| 863 | 
            +
             | 
| 864 | 
            +
                        # if is_validation or is_prediction:
         | 
| 865 | 
            +
                        #     model_subject_features = model_subject_features[:, :30, :]
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                        # entity disambiguation. Here relation_disambiguation_loss would only be useful to
         | 
| 868 | 
            +
                        # reduce the number of candidate relations for the next step, but currently unused.
         | 
| 869 | 
            +
                        if self.config.entity_type_loss or self.relation_disambiguation_loss:
         | 
| 870 | 
            +
                            (re_ned_entities_logits) = self.compute_entity_logits(
         | 
| 871 | 
            +
                                model_subject_features,
         | 
| 872 | 
            +
                                model_features[
         | 
| 873 | 
            +
                                    special_symbols_mask | special_symbols_mask_entities
         | 
| 874 | 
            +
                                ].view(batch_size, -1, model_features.shape[-1]),
         | 
| 875 | 
            +
                            )
         | 
| 876 | 
            +
                            entity_types = torch.sum(special_symbols_mask_entities, dim=1)[0].item()
         | 
| 877 | 
            +
                            ned_type_logits = re_ned_entities_logits[:, :, :entity_types]
         | 
| 878 | 
            +
                            re_entities_logits = re_ned_entities_logits[:, :, entity_types:]
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                            if self.config.entity_type_loss:
         | 
| 881 | 
            +
                                ned_type_probabilities = torch.sigmoid(ned_type_logits)
         | 
| 882 | 
            +
                                ned_type_predictions = ned_type_probabilities.argmax(dim=-1)
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                                if self.config.add_entity_embedding:
         | 
| 885 | 
            +
                                    special_symbols_representation = model_features[
         | 
| 886 | 
            +
                                        special_symbols_mask_entities
         | 
| 887 | 
            +
                                    ].view(batch_size, entity_types, -1)
         | 
| 888 | 
            +
             | 
| 889 | 
            +
                                    entities_representation = torch.einsum(
         | 
| 890 | 
            +
                                        "bsp,bpe->bse",
         | 
| 891 | 
            +
                                        ned_type_probabilities,
         | 
| 892 | 
            +
                                        special_symbols_representation,
         | 
| 893 | 
            +
                                    )
         | 
| 894 | 
            +
                                    model_subject_features = torch.cat(
         | 
| 895 | 
            +
                                        [model_subject_features, entities_representation], dim=-1
         | 
| 896 | 
            +
                                    )
         | 
| 897 | 
            +
                            re_entities_probabilities = torch.sigmoid(re_entities_logits)
         | 
| 898 | 
            +
                            re_entities_predictions = re_entities_probabilities.round()
         | 
| 899 | 
            +
                        else:
         | 
| 900 | 
            +
                            (
         | 
| 901 | 
            +
                                ned_type_logits,
         | 
| 902 | 
            +
                                ned_type_probabilities,
         | 
| 903 | 
            +
                                re_entities_logits,
         | 
| 904 | 
            +
                                re_entities_probabilities,
         | 
| 905 | 
            +
                            ) = (None, None, None, None)
         | 
| 906 | 
            +
                            ned_type_predictions, re_entities_predictions = (
         | 
| 907 | 
            +
                                torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
         | 
| 908 | 
            +
                                torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
         | 
| 909 | 
            +
                            )
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                        # Compute relation logits
         | 
| 912 | 
            +
                        re_logits = self.compute_relation_logits(
         | 
| 913 | 
            +
                            model_subject_features,
         | 
| 914 | 
            +
                            model_features[special_symbols_mask].view(
         | 
| 915 | 
            +
                                batch_size, -1, model_features.shape[-1]
         | 
| 916 | 
            +
                            ),
         | 
| 917 | 
            +
                        )
         | 
| 918 | 
            +
             | 
| 919 | 
            +
                        re_probabilities = torch.softmax(re_logits, dim=-1)
         | 
| 920 | 
            +
                        # we set a thresshold instead of argmax in cause it needs to be tweaked
         | 
| 921 | 
            +
                        re_predictions = re_probabilities[:, :, :, :, 1] > relation_threshold
         | 
| 922 | 
            +
                        re_probabilities = re_probabilities[:, :, :, :, 1]
         | 
| 923 | 
            +
                    else:
         | 
| 924 | 
            +
                        (
         | 
| 925 | 
            +
                            ned_type_logits,
         | 
| 926 | 
            +
                            ned_type_probabilities,
         | 
| 927 | 
            +
                            re_entities_logits,
         | 
| 928 | 
            +
                            re_entities_probabilities,
         | 
| 929 | 
            +
                        ) = (None, None, None, None)
         | 
| 930 | 
            +
                        ned_type_predictions, re_entities_predictions = (
         | 
| 931 | 
            +
                            torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
         | 
| 932 | 
            +
                            torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
         | 
| 933 | 
            +
                        )
         | 
| 934 | 
            +
                        re_logits, re_probabilities, re_predictions = (
         | 
| 935 | 
            +
                            torch.zeros(
         | 
| 936 | 
            +
                                [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
         | 
| 937 | 
            +
                            ).to(input_ids.device),
         | 
| 938 | 
            +
                            torch.zeros(
         | 
| 939 | 
            +
                                [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
         | 
| 940 | 
            +
                            ).to(input_ids.device),
         | 
| 941 | 
            +
                            torch.zeros(
         | 
| 942 | 
            +
                                [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
         | 
| 943 | 
            +
                            ).to(input_ids.device),
         | 
| 944 | 
            +
                        )
         | 
| 945 | 
            +
             | 
| 946 | 
            +
                    # output build
         | 
| 947 | 
            +
                    output_dict = dict(
         | 
| 948 | 
            +
                        batch_size=batch_size,
         | 
| 949 | 
            +
                        ned_start_logits=ned_start_logits,
         | 
| 950 | 
            +
                        ned_start_probabilities=ned_start_probabilities,
         | 
| 951 | 
            +
                        ned_start_predictions=ned_start_predictions,
         | 
| 952 | 
            +
                        ned_end_logits=ned_end_logits,
         | 
| 953 | 
            +
                        ned_end_probabilities=ned_end_probabilities,
         | 
| 954 | 
            +
                        ned_end_predictions=ned_end_predictions,
         | 
| 955 | 
            +
                        ned_type_logits=ned_type_logits,
         | 
| 956 | 
            +
                        ned_type_probabilities=ned_type_probabilities,
         | 
| 957 | 
            +
                        ned_type_predictions=ned_type_predictions,
         | 
| 958 | 
            +
                        re_entities_logits=re_entities_logits,
         | 
| 959 | 
            +
                        re_entities_probabilities=re_entities_probabilities,
         | 
| 960 | 
            +
                        re_entities_predictions=re_entities_predictions,
         | 
| 961 | 
            +
                        re_logits=re_logits,
         | 
| 962 | 
            +
                        re_probabilities=re_probabilities,
         | 
| 963 | 
            +
                        re_predictions=re_predictions,
         | 
| 964 | 
            +
                    )
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    if (
         | 
| 967 | 
            +
                        start_labels is not None
         | 
| 968 | 
            +
                        and end_labels is not None
         | 
| 969 | 
            +
                        and relation_labels is not None
         | 
| 970 | 
            +
                        and is_prediction is False
         | 
| 971 | 
            +
                    ):
         | 
| 972 | 
            +
                        ned_start_loss = self.compute_loss(ned_start_logits, ned_start_labels)
         | 
| 973 | 
            +
                        end_labels[end_labels > 0] = 1
         | 
| 974 | 
            +
                        ned_end_loss = self.compute_loss(ned_end_logits, end_labels)
         | 
| 975 | 
            +
                        if self.config.entity_type_loss or self.relation_disambiguation_loss:
         | 
| 976 | 
            +
                            ned_type_loss = self.compute_ned_type_loss(
         | 
| 977 | 
            +
                                disambiguation_labels,
         | 
| 978 | 
            +
                                re_ned_entities_logits,
         | 
| 979 | 
            +
                                ned_type_logits,
         | 
| 980 | 
            +
                                re_entities_logits,
         | 
| 981 | 
            +
                                entity_types,
         | 
| 982 | 
            +
                                (model_subject_features != -100).all(2),
         | 
| 983 | 
            +
                            )
         | 
| 984 | 
            +
                        relation_loss = self.compute_relation_loss(relation_labels, re_logits)
         | 
| 985 | 
            +
                        # compute loss. We can skip the relation loss if we are in the first epochs (optional)
         | 
| 986 | 
            +
                        if self.config.entity_type_loss or self.relation_disambiguation_loss:
         | 
| 987 | 
            +
                            output_dict["loss"] = (
         | 
| 988 | 
            +
                                ned_start_loss + ned_end_loss + relation_loss + ned_type_loss
         | 
| 989 | 
            +
                            ) / 4
         | 
| 990 | 
            +
                            output_dict["ned_type_loss"] = ned_type_loss
         | 
| 991 | 
            +
                        else:
         | 
| 992 | 
            +
                            output_dict["loss"] = ((1 / 20) * (ned_start_loss + ned_end_loss)) + (
         | 
| 993 | 
            +
                                (9 / 10) * relation_loss
         | 
| 994 | 
            +
                            )
         | 
| 995 | 
            +
                        output_dict["ned_start_loss"] = ned_start_loss
         | 
| 996 | 
            +
                        output_dict["ned_end_loss"] = ned_end_loss
         | 
| 997 | 
            +
                        output_dict["re_loss"] = relation_loss
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                    return output_dict
         | 
