File size: 12,333 Bytes
9387ea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
license: cc-by-nd-4.0
language:
- en
tags:
- eeg
- time-series
- cross-attention
- foundation-model
- neuroscience
library_name: pytorch
---


<div align="center">
  <img src="https://raw.githubusercontent.com/pulp-bio/BioFoundation/refs/heads/main/docs/model/logo/LUNA_logo.png" alt="LUNA Logo" width="800"/>
  <h1>LUNA: Efficient and Topology-Agnostic Foundation Model for EEG</h1>
</div>
<p align="center">
  <a href="https://github.com/pulp-bio/BioFoundation">
    <img src ="https://img.shields.io/github/stars/pulp-bio/BioFoundation?color=ccf" alt="Github">
  </a>
  <a href="https://creativecommons.org/licenses/by-nd/4.0/">
    <img src="https://img.shields.io/badge/License-CC_BY--ND_4.0-lightgrey.svg" alt="License">
  </a>
  <a href="https://arxiv.org/abs/2510.22257">
    <img src="https://img.shields.io/badge/arXiv-2510.22257-b31b1b.svg" alt="Paper">
  </a>
</p>

**LUNA** (Latent Unified Network Architecture) is a **self-supervised foundation model for EEG** that makes models **agnostic to electrode topology**. LUNA projects arbitrary channel layouts into a **fixed-size latent space with learned queries + cross-attention**, then runs **patch-wise temporal self-attention** only on this compact latent. This **decouples compute from channel count**, yielding **linear-in-channels scaling**, large FLOPs/memory savings, and strong transfer across datasets and montages.

---

## 🔒 License & Usage Policy (Weights)

**Weights license:** The released model weights are licensed under **Creative Commons Attribution–NoDerivatives 4.0 (CC BY-ND 4.0)**. This section summarizes the practical implications for users. *This is not legal advice; please read the full license text.*

### ✅ You may
- **Use** and **redistribute** the **unmodified** LUNA weights (including in commercial settings) **with proper attribution** to the LUNA authors.
- **Fine-tune / adapt** the weights **for your internal use** (research or production) **without redistributing** the modified weights.
- **Publish your code, configs, logs, and papers** describing experiments with LUNA (please cite the paper).

### 🚫 You may not
- **Share, host, or redistribute any modified weights** (including LoRA/adapter/delta checkpoints or pruned/quantized variants). Any parameter set that encodes an adaptation is considered a derivative and cannot be shared under CC BY-ND 4.0.
- **Imply endorsement** by the LUNA authors for any derivative or evaluation without our written permission.
- **Use the LUNA name** in a way that suggests your modified model is an official LUNA release.

### 🤝 How to contribute improvements (PR-gated releases)
We welcome community improvements via a **pull-request (PR)** workflow. If you believe your improvements should become an **official LUNA release**:
1. **Open a PR** in the [BioFoundation repository](https://github.com/pulp-bio/BioFoundation) describing the change (architecture/head/training recipe, datasets, preprocessing, compute).
2. Include **reproducibility artifacts**: configs, seeds, scripts, environment details, training/validation logs, and the **evaluation protocol** (e.g., TUAB/TUAR/TUSL) with exact splits.
3. Provide **comprehensive results** (AUROC/AUPR/BA, FLOPs, memory) vs. the baselines reported in the LUNA paper.
4. After **maintainer review**, approved changes will be **retrained/validated** and, if accepted, **released by the maintainers** as a new **official LUNA** checkpoint under **CC BY-ND 4.0**.

> Rationale: CC BY-ND protects users from fragmented, lower-quality “LUNA variants,” while still enabling internal fine-tuning and a path for the community to upstream improvements through review.

---

## 🔎 Model Summary

- **Goal:** Topology-agnostic EEG modeling with **linear-in-channels** compute/memory.
- **Core idea:** **Channel-Unification Module** uses **learned queries** (Q) with **cross-attention** to map any set of channels to a fixed latent; **temporal Transformer** then operates on that latent sequence.
- **Pre-training data:** TUEG + Siena, **>21,000 hours** of raw EEG; downstream subjects removed to avoid leakage.
- **Downstream tasks:** TUAB (abnormal), **TUAR** (artifacts), **TUSL** (slowing), **SEED-V** (emotion; unseen 62-ch montage).

---

## 🚀 Model Variants

| Variant | Parameters |
| :--- | ---: |
| **LUNA-Base** | **7M** |
| **LUNA-Large** | **43M** |
| **LUNA-Huge** | **311M** |

*Scaling increases depth/width of the temporal encoder and the query/embedding sizes in the unification module.* 

### ⚙️ Model size configs (ready-made YAMLs)

Pick a LUNA size by selecting one of the provided model configs:

- `config/model/LUNA_base.yaml` — Base (≈7M)  
- `config/model/LUNA_large.yaml` — Large (≈43M)  
- `config/model/LUNA_huge.yaml` — Huge (≈311M)

**Use it via experiment defaults override** (recommended):

```yaml
# inside config/experiment/LUNA_finetune.yaml
defaults:
  - override /data_module: finetune_data_module   # or subject_independent_data_module
  - override /model: LUNA_base                    # change to LUNA_large or LUNA_huge
  - override /scheduler: cosine
  - override /task: finetune_task_LUNA
  - override /criterion: finetune_criterion
```

**Or from the CLI** (no file edits):

```bash
python -u run_train.py +experiment=LUNA_finetune /model=LUNA_large
```

---

## 📊 Results (Highlights)

- **TUAR (artifact detection):** **AUROC 0.921** (LUNA-Huge).
- **TUSL (slowing, 4-class):** **AUROC 0.802** (LUNA-Huge).
- **TUAB (abnormal vs normal):** **Bal. Acc. 81.57%**, **AUROC 0.8957** (LUNA-Huge).

**Efficiency:** Up to **300× fewer FLOPs** and **≈10× lower GPU memory** vs quadratic spatio-temporal attention on dense caps / long windows, thanks to unifying channels **before** temporal attention. 

---

## 🧠 Intended Use & Limitations

**Intended use.** Research on EEG representation learning & classification (abnormality, artifacts, slowing, emotion), especially when **montages vary** or **channel counts are high**.

**Limitations.**
- **Not a medical device.** Do **not** use for clinical decisions without proper validation & regulatory clearance.  
- **Unseen topologies:** Zero-shot transfer to **very different/dense** layouts (e.g., SEED-V) can underperform SOTA despite positive scaling; consider augmenting pre-training montage diversity and spatial encodings.
- **Distribution shifts:** Performance varies across cohorts, devices, and label protocols; validate locally and consider domain adaptation.

---

## 🏗️ Architecture & Training

**Tokenizer & features.** EEG is patch-segmented; temporal features via 1D conv w/ GroupNorm+GELU; **frequency features** (FFT mag/phase → MLP) are added; 3D electrode coordinates encoded via **NeRF-style sinusoids → MLP** (positional enc).

**Channel-Unification Module.** **Q learned queries** cross-attend to **channel-wise patch features** to produce a **fixed Q×E latent** per patch; FFN + Transformer layers refine the query tokens. Complexity is **O(Q·C)** (linear in channels).

**Temporal encoder.** **Patch-wise Transformer** with **RoPE** operates on the latent sequence (length = #patches), **not** on channels×patches, reducing sequence length and cost substantially.

**Pre-training objective.** **Masked-patch reconstruction** with Smooth-L1; decoder uses **channel-indexed queries** to reconstruct masked tokens. **Query specialization loss** encourages diverse query–channel affinities. 

---

## 🔧 Fine-tuning — General Checklist

0. **Install & read data prep**: clone the [BioFoundation repo](https://github.com/pulp-bio/BioFoundation), set up the environment as described there, then open `make_datasets/README.md` for dataset-specific notes (naming, expected folder layout, and common pitfalls).
1. **Choose model size**: set `- override /model: {LUNA_base|LUNA_large|LUNA_huge}` in your experiment YAML (or `/model=...` via CLI).
2. **Point to weights**: set `pretrained_safetensors_path: /path/to/LUNA_*.safetensors` in the experiment YAML.
3. **Pick data module**:
   - **TUH datasets (TUAB/TUSL/TUAR)**`- override /data_module: finetune_data_module` and optionally override `data_module.train/val/test.hdf5_file` paths.
   - **Non-TUH (e.g., SEED-V)**`- override /data_module: subject_independent_data_module` and remove the TUH-specific `data_module` block.
4. **Task settings**: set `classification_type` (`bc`, `mc`, `mmc`, `mcc`) and `model.num_classes` to match your downstream task.
5. **Env vars**: export `DATA_PATH` (dataset root) and `CHECKPOINT_DIR` (artifacts).
6. **Trainer/optimizer**: adjust `gpus/devices`, `batch_size`, `max_epochs`, LR/scheduler if needed.
7. **I/O**: set `io.base_output_path` and confirm `io.checkpoint_dirpath` exists.

---

## 🧪 Example: Fine-tune on TUSL (end-to-end)

**0) Install & acquire data**  
- Follow the installation instructions in the [BioFoundation repository](https://github.com/pulp-bio/BioFoundation).  
- Read `make_datasets/README.md` for exact dataset preparation details.  
- Download the **raw TUSL** dataset from the official [TUH EEG corpus source](https://isip.piconepress.com/projects/nedc/html/tuh_eeg/index.shtml) and place it locally, e.g.: `/eeg_data/TUSL/`.

**1) Prepare data**

```bash
python make_datasets/process_raw_eeg.py tusl       --root_dir /eeg_data/TUSL/edf       --output_dir /processed_eeg

python make_datasets/make_hdf5.py       --prepath /processed_eeg       --dataset TUSL --remove_pkl
```

**2) Set environment variables**

```python
# run_train.py (example)
import os
os.environ["DATA_PATH"] = "/processed_eeg"   # contains TUSL_data/{train,val,test}.h5
os.environ["CHECKPOINT_DIR"] = "/LUNA_runs"  # directory for checkpoints & logs
```

**3) Edit the experiment file: `config/experiment/LUNA_finetune.yaml`**

```yaml
defaults:
  - override /data_module: finetune_data_module # Change based on dataset, finetune_data_module for TUH and subject_independent_data_module for non-TUH
  - override /model: LUNA_base              # Pick the model size, here base, but also available are LUNA_large / LUNA_huge.

pretrained_safetensors_path: /path/to/LUNA_base.safetensors

classification_type: "mcc" # Set based on what type of classification task (Multiclass Classification (MCC), Binary (BC), etc.)
model:
  num_classes: 4 # Set based on how many classes are in your dataset

# Write paths to preprocessed .h5 TUSL files
data_module:
  train:
    _target_: datasets.tuh_dataset.TUH_Dataset
    hdf5_file: ${env:DATA_PATH}/TUSL_data/train.h5 #Here point to the correct file
    finetune: true
  val:
    _target_: datasets.tuh_dataset.TUH_Dataset
    hdf5_file: ${env:DATA_PATH}/TUSL_data/val.h5 #Here point to the correct file
    finetune: true
  test:
    _target_: datasets.tuh_dataset.TUH_Dataset
    hdf5_file: ${env:DATA_PATH}/TUSL_data/test.h5 #Here point to the correct file
    finetune: true
```

**4) Launch**

```bash
python -u run_train.py +experiment=LUNA_finetune
```

*Tip*: to switch sizes without editing the file:

```bash
python -u run_train.py +experiment=LUNA_finetune /model=LUNA_large pretrained_safetensors_path=/path/to/LUNA_large.safetensors
```

---

## ⚖️ Responsible AI, Risks & Biases

- **Clinical safety:** research-only; human oversight required.  
- **Bias & drift:** montage/device/population differences can induce shifts; validate and monitor.  
- **Artifacts & rare events:** robustness varies; use QC and task-appropriate preprocessing.

---

## 🔗 Sources

- **Code:** https://github.com/pulp-bio/BioFoundation  
- **Paper:** LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis (arxiv:2510.22257).

---

## 📜 Citation

If you use LUNA, please cite:

```bibtex
@inproceedings{
  doner2025luna,
  title={{LUNA}: Efficient and Topology-Agnostic Foundation Model for {EEG} Signal Analysis},
  author={Berkay D{\"o}ner and Thorir Mar Ingolfsson and Luca Benini and Yawei Li},
  booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
  year={2025},
  url={https://openreview.net/forum?id=uazfjnFL0G}
}
```

---

## 🛠️ Maintenance & Contact

- **Issues & support:** please open a GitHub issue in the BioFoundation repository.

---

## 🗒️ Changelog

- **v1.0:** Initial release of LUNA model card with task-specific checkpoints and instructions.