File size: 30,989 Bytes
1633fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from torch.cuda.amp import GradScaler, autocast
from torchvision.utils import make_grid

import importlib
import utils
import logging
import torch.nn as nn

import sys
from typing import Iterable, Optional
import utils
import logging
import torch.distributed as dist
import os
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from pycocotools.coco import COCO
from PIL import Image, ImageDraw, ImageFont
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from tqdm import tqdm
import matplotlib.pyplot as plt
import torchvision


def get_args_parser():
    parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
    parser.add_argument('--batch-size', default=64, type=int)
    parser.add_argument('--epochs', default=300, type=int)
    parser.add_argument('--bce-loss', action='store_true')
    parser.add_argument('--unscale-lr', action='store_true')

    # Feature extractor parameters
    parser.add_argument('--model', default='deit_base_patch16_224', type=str)
    parser.add_argument('--target_model', default='deit_base_patch16_224', type=str)
    parser.add_argument('--input-size', default=224, type=int, help='images input size')

    parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
                        help='Dropout rate (default: 0.)')
    parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
                        help='Drop path rate (default: 0.1)')

    parser.add_argument('--model-ema', action='store_true')
    parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
    parser.set_defaults(model_ema=True)
    parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
    parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')

    # CLDM parameters
    parser.add_argument('--total_train_steps', default=300000, type=int)
    parser.add_argument('--resume_path', default='', help='resume from checkpoint for controlnet')
    parser.add_argument('--cldm_learning_rate', default=1e-4, type=float, help='learning rate for controlnet')
    parser.add_argument('--sd_locked', default=True, help='whether to lock the sd of controlnet')
    parser.add_argument('--only_mid_control', default=False, help='only control the middle layers of controlnet')
    parser.add_argument('--cldm_yaml', default='./models/cldm_v15.yaml', help='yaml file for controlnet')
    parser.add_argument('--exp_dir', default='./exp', help='experiment directory')
    parser.add_argument('--image_floder', default='./data', help='training image floder')
    parser.add_argument('--txt_path', default='./data', help='training txt path')
    parser.add_argument("--log_every", default=20, type=int, help="log every n steps")
    parser.add_argument("--ckpt_every", default=1000, type=int, help="save checkpoint every n steps")
    parser.add_argument("--image_every", default=1000, type=int, help="log image every n steps")
    parser.add_argument('--controlnet_dir', default='', type=str, help='resume from checkpoint for controlnet')
    parser.add_argument('--global_step', default=0, type=int, help='global step')
    parser.add_argument('--ddim_steps', default=50, type=int, help='ddim steps')
    parser.add_argument('--eta', default=0, type=float, help='ddim eta')
    parser.add_argument('--unconditional_guidance_scale', default=1.5, type=float, help='unconditional guidance scale')

    # Optimizer parameters
    parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
                        help='Optimizer (default: "adamw"')
    parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
                        help='Optimizer Epsilon (default: 1e-8)')
    parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
                        help='Optimizer Betas (default: None, use opt default)')
    parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                        help='SGD momentum (default: 0.9)')
    parser.add_argument('--weight-decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')
    # Learning rate schedule parameters
    parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
                        help='LR scheduler (default: "cosine"')
    parser.add_argument('--lr', type=float, default=4e-4, metavar='LR',
                        help='learning rate (default: 5e-4)')
    parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
                        help='learning rate noise on/off epoch percentages')
    parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
                        help='learning rate noise limit percent (default: 0.67)')
    parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
                        help='learning rate noise std-dev (default: 1.0)')
    parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
                        help='warmup learning rate (default: 1e-6)')
    parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')

    parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
                        help='epoch interval to decay LR')
    parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
                        help='epochs to warmup LR, if scheduler supports')
    parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
                        help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
    parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
                        help='patience epochs for Plateau LR scheduler (default: 10')
    parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
                        help='LR decay rate (default: 0.1)')

    # Augmentation parameters
    parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
                        help='Color jitter factor (default: 0.3)')
    parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
                        help='Use AutoAugment policy. "v0" or "original". " + \
                             "(default: rand-m9-mstd0.5-inc1)'),
    parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
    parser.add_argument('--train-interpolation', type=str, default='bicubic',
                        help='Training interpolation (random, bilinear, bicubic default: "bicubic")')

    parser.add_argument('--repeated-aug', action='store_true')
    parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
    parser.set_defaults(repeated_aug=True)
    
    parser.add_argument('--train-mode', action='store_true')
    parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
    parser.set_defaults(train_mode=True)
    
    parser.add_argument('--ThreeAugment', action='store_true') #3augment
    
    parser.add_argument('--src', action='store_true') #simple random crop
    
    # add dataset parameters
    parser.add_argument('--global_crops_size', '--img_size', default=224, type=int,
                        help="this should be equal to image size")
    parser.add_argument('--patch_size', default=16, type=int,
                        help="patch size for vit patch embedding")
    
    # add masking parameter
    parser.add_argument('--mask_ratio', default=(0.1, 0.5), type=float, nargs='+',
                        help="mask ratio can be either a value or a range")
    parser.add_argument('--mask_probability', default=0., type=float,
                        help="how many samples with be applied with masking")
    parser.add_argument('--mask_first_n', action='store_true',
                        help="mask the first n sample to avoid shuffling. Needed for MAE-style encoder")
    parser.add_argument('--clone_batch', default=1, type=int,
                        help="how many times to clone the batch for masking (default: 1, not cloning)")
    
    # * Random Erase params
    parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
                        help='Random erase prob (default: 0.25)')
    parser.add_argument('--remode', type=str, default='pixel',
                        help='Random erase mode (default: "pixel")')
    parser.add_argument('--recount', type=int, default=1,
                        help='Random erase count (default: 1)')
    parser.add_argument('--resplit', action='store_true', default=False,
                        help='Do not random erase first (clean) augmentation split')

    # * Mixup params
    parser.add_argument('--mixup', type=float, default=0.8,
                        help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
    parser.add_argument('--cutmix', type=float, default=1.0,
                        help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
    parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
                        help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
    parser.add_argument('--mixup-prob', type=float, default=1.0,
                        help='Probability of performing mixup or cutmix when either/both is enabled')
    parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
                        help='Probability of switching to cutmix when both mixup and cutmix enabled')
    parser.add_argument('--mixup-mode', type=str, default='batch',
                        help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')

    # Distillation parameters
    parser.add_argument('--teacher-model', default='base', type=str)
    parser.add_argument('--teacher-path', type=str, default='')
    parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
    parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
    parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
    parser.add_argument('--lambda_token', type=float, default=1.0)
    parser.add_argument('--lambda_fea', type=float, default=1.0)
    parser.add_argument('--lambda_patch', type=float, default=1.0)
    
    # * Cosub params
    parser.add_argument('--cosub', action='store_true') 
    
    # * Finetuning params
    parser.add_argument('--finetune', default='', help='finetune from checkpoint')
    parser.add_argument('--attn-only', action='store_true')
    parser.add_argument('--weight_inherit', default='') 
    
    # Dataset parameters
    parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
                        help='dataset path')
    parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'IMNET_ibot', 'IMNET_ibot_aug', 'IMNET_ibot_fast_aug', 'INAT', 'INAT19', 'IMNET_L', 'IMNET_L_ibot'],
                        type=str, help='Image Net dataset path')
    parser.add_argument('--inat-category', default='name',
                        choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
                        type=str, help='semantic granularity')

    parser.add_argument('--output_dir', default='',
                        help='path where to save, empty for no saving')
    parser.add_argument('--log_dir', default='/data1/qiyp/Proteus-pytorch/pretrain/log/DINOv2_training/log', 
                        type=str, help='saving logging info every 20 iters')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
    parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
    parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
    parser.add_argument('--num_workers', default=8, type=int)
    parser.add_argument('--pin-mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
                        help='')
    parser.set_defaults(pin_mem=True)

    # distributed training parameters
    parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training')
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    return parser

def setup_logger(log_dir, rank=0):
    if rank != 0:
        return  # 只有主进程(rank 0)配置日志记录器
    log_formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s]  %(message)s")
    root_logger = logging.getLogger()
    root_logger.setLevel(logging.INFO)

    log_file_handler = logging.FileHandler(log_dir, encoding='utf-8')
    log_file_handler.setFormatter(log_formatter)
    root_logger.addHandler(log_file_handler)

    log_stream_handler = logging.StreamHandler(sys.stdout)
    log_stream_handler.setFormatter(log_formatter)
    root_logger.addHandler(log_stream_handler)

    logging.info('Logging file is %s' % log_dir)

class CustomCocoDataset(Dataset):
    def __init__(self, img_folder, common_transform=None):
        self.img_folder = img_folder
        self.ids = [os.path.splitext(f)[0] for f in os.listdir(img_folder) if f.endswith(('.jpg', '.jpeg', '.png'))]
        self.common_transform = common_transform
    
    def __len__(self):
        return len(self.ids)

    def __getitem__(self, index):
        img_id = self.ids[index]
        img_path = os.path.join(self.img_folder, img_id + '.jpg')
        image = Image.open(img_path).convert('RGB')

        # Perform a random crop
        i, j, h, w = transforms.RandomResizedCrop.get_params(
            image, scale=(0.95, 1.0), ratio=(1.0, 1.0))  # Ensure the same crop for both images
        
        cropped_image = transforms.functional.crop(image, i, j, h, w)

        # Resize to different resolutions
        jpg_image = transforms.functional.resize(cropped_image, 512, interpolation=transforms.InterpolationMode.BICUBIC)
        hint_image = transforms.functional.resize(cropped_image, 448, interpolation=transforms.InterpolationMode.BICUBIC)

        # Apply common transformations
        if self.common_transform is not None:
            jpg_image = self.common_transform(jpg_image)
            hint_image = self.common_transform(hint_image)

        # Set captions to an empty string
        combined_caption = ""

        return dict(jpg=jpg_image, txt=combined_caption, hint=hint_image)

def show_params(model, show_learnable=True):
    params = set()
    for name, param in model.named_parameters():
        if param.requires_grad == show_learnable:
            params.add(name)

    if show_learnable:
        logging.info("Parameters to be updated: ")
    else:
        logging.info("Parameters that are not being updated: ")

    for each in params:
        logging.info('\t{}'.format(str(each)))
    logging.info('\n')

def log_txt_as_img(wh, xc):
    # wh a tuple of (width, height)
    # xc a list of captions to plot
    b = len(xc)
    txts = list()
    for bi in range(b):
        txt = Image.new("RGB", wh, color="white")
        draw = ImageDraw.Draw(txt)
        # font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
        font = ImageFont.load_default()
        nc = int(40 * (wh[0] / 256))
        lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))

        try:
            draw.text((0, 0), lines, fill="black", font=font)
        except UnicodeEncodeError:
            print("Cant encode string for logging. Skipping.")

        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
        txts.append(txt)
    txts = np.stack(txts)
    txts = torch.tensor(txts)
    return txts

def visualize_features(features):
    # Assuming features are of shape (batch_size, num_features, height, width)
    batch_size, num_features, height, width = features.shape
    
    # Normalize the feature maps to the range [0, 1]
    vis = features.mean(dim=1, keepdim=True)
    vis = vis - vis.min()
    vis = vis / vis.max()
    
    # Squeeze the channel dimension
    vis = vis.squeeze(1).cpu().detach().numpy()
    
    # Apply a colormap (e.g., viridis) to convert it to RGB
    vis_colored = np.zeros((batch_size, height, width, 3))
    for i in range(batch_size):
        vis_colored[i] = plt.cm.viridis(vis[i])[:, :, :3]  # Drop the alpha channel
    
    # Convert vis_colored to a tensor and save using torchvision
    vis_colored = torch.tensor(vis_colored).permute(0, 3, 1, 2)  # Convert to (batch, channels, height, width)

    return vis_colored

def main(args):
    utils.init_distributed_mode(args)

    print(args)

    device = torch.device(args.device)
     # 获取当前进程的 rank
    rank = dist.get_rank() if dist.is_initialized() else 0
    # set up logger
    os.makedirs(args.log_dir, exist_ok=True)
    setup_logger(args.log_dir + '/' + time.strftime('%Y%m%d_%H%M%S') + '.log', rank)
    logging.info('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    logging.info("{}".format(args).replace(', ', ',\n') + '\n')

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    # Setup an experiment folder
    exp_dir = args.exp_dir
    os.makedirs(exp_dir, exist_ok=True)
    ckpt_dir = os.path.join(exp_dir, "checkpoints")
    os.makedirs(ckpt_dir, exist_ok=True)
    logging.info(f"Experiment directory created at {exp_dir}")

    # Create Dataset
    common_transforms = transforms.Compose([
        transforms.ToTensor()
    ])
    # txt_path = args.txt_path
    img_folder = args.image_floder
    # dataset = CustomCocoDataset(txt_path, img_folder, common_transform=common_transforms)
    dataset = CustomCocoDataset(img_folder, common_transform=common_transforms)
    logging.info(f"Loaded train dataset with {len(dataset)} samples")

    # Distributed Sampler
    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        sampler_train = torch.utils.data.DistributedSampler(
            dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True
        )
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset)
    logging.info("Sampler_train = %s" % str(sampler_train))

    # Dataloader
    dataloader = DataLoader(
        dataset, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=True)
    logging.info('Dataloader created')

    # ========== create IF model ========== #
    logging.info(f"# ===== Creating Feature Extractor: {args.model} ===== #")
    # print(f"Creating model: {args.model}")  # models_proteus_dinov2
    meta_arch_module = importlib.import_module(args.model)
    MetaArch = meta_arch_module.MetaArch

    model = MetaArch(args)
    logging.info("Model = %s" % str(model))

    if args.finetune:
        checkpoint = torch.load(args.finetune, map_location='cpu')

        if 'state_dict' in checkpoint:
            pretrained_dict = checkpoint['state_dict']
        elif 'model' in checkpoint:
            pretrained_dict = checkpoint['model']
        else:
            pretrained_dict = checkpoint

        missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
        logging.info('Finetuning from %s' % args.finetune)
        logging.info('missing_keys: %s' % str(missing_keys))
        logging.info('unexpected_keys: %s' % str(unexpected_keys))

    if args.attn_only:
        for name_p,p in model.named_parameters():
            if '.attn.' in name_p:
                p.requires_grad = True
            else:
                p.requires_grad = False
        try:
            model.head.weight.requires_grad = True
            model.head.bias.requires_grad = True
        except:
            model.fc.weight.requires_grad = True
            model.fc.bias.requires_grad = True
        try:
            model.pos_embed.requires_grad = True
        except:
            print('no position encoding')
        try:
            for p in model.patch_embed.parameters():
                p.requires_grad = False
        except:
            print('no patch embed')
            
    model.to(device)
    model.eval()

    # ========== create cldm ========== # 
    logging.info(f"# ===== Creating ControlNet: ===== #")
    cldm = create_model(args.cldm_yaml).cpu()
    cldm.load_state_dict(load_state_dict(args.resume_path, location='cpu'))
    cldm.learning_rate = args.cldm_learning_rate
    cldm.sd_locked = args.sd_locked
    cldm.only_mid_control = args.only_mid_control
    cldm = cldm.to(device)

    if args.controlnet_dir:
        logging.info(f"Resuming controlnet from {args.controlnet_dir}")
        checkpoint = torch.load(args.controlnet_dir, map_location='cpu')
        cldm_state_dict = checkpoint['model_state_dict']
        cldm.control_model.load_state_dict(cldm_state_dict)

        if 'global_step' in checkpoint:
            global_step = checkpoint['global_step']
        else:
            global_step = 0
    
        if 'epoch' in checkpoint:
            epoch = checkpoint['epoch']
        else:
            epoch = 0
        logging.info(f"Resumed from global step {global_step}, epoch {epoch}")

    else:
        global_step = 0
        epoch = 0

    if args.distributed:
        cldm = torch.nn.parallel.DistributedDataParallel(cldm, device_ids=[args.gpu], find_unused_parameters=True)
        cldm_without_ddp = cldm.module
    else:
        cldm_without_ddp = cldm
    
    optimizer = cldm_without_ddp.configure_optimizers()
    if args.controlnet_dir:
        checkpoint = torch.load(args.controlnet_dir, map_location='cpu')
        # 恢复优化器状态
        if 'optimizer_state_dict' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

    ddim_sampler = DDIMSampler(cldm_without_ddp)

    # show_params(cldm_without_ddp.control_model)
    
    logging.info("# ========== Building model done! ========== #")
    max_steps = args.total_train_steps
    step_loss = []
    epoch_loss = []

    # Create SummaryWriter only in the main process
    if rank == 0:
        writer = SummaryWriter(exp_dir)

    logging.info(f"Training for {max_steps} steps...")

    # 使用 GradScaler 进行混合精度训练
    scaler = GradScaler(enabled=True)
    if args.controlnet_dir:
        scaler.load_state_dict(checkpoint['scaler_state_dict'])  # Load GradScaler state

    cldm_without_ddp.train()
    while global_step < max_steps:
        pbar = tqdm(iterable=dataloader, unit="batch")
        for batch in dataloader:
            if args.distributed:
                sampler_train.set_epoch(epoch)

            gt = batch["jpg"].to(device)
            hint = batch["hint"].to(device)
            prompt = batch["txt"]
            _, _, h, w = hint.shape
            _, _, H, W = gt.shape
            with torch.no_grad():
                with autocast(dtype=torch.bfloat16):  # 使用 bf16 自动混合精度
                    z_0 = cldm_without_ddp.get_latent(2 * gt - 1) # rescale to [-1, 1]
                    features_dict = model.student.backbone(hint, is_training=True)
                    features = features_dict['x_norm_patchtokens']
                    features, _ = model.info_bottleneck(features, is_training=False)
                    features = features.view(-1, h//14, w//14, features.shape[2])  # [B, h, w, c]
                    features = features.permute(0, 3, 1, 2)
                    features = (features - features.mean()) / features.std()
                    features = torch.clamp(features, -5, 5)
                    features_not_zero = features
                    if torch.rand(1).item() < 0.1: # 10% of the time, set features to zero
                        features = torch.zeros_like(features)
                    cond = cldm_without_ddp.prepare_condition(prompt, features) # cond["c_crossattn"]: txt embed, cond["c_concat"]: features
            
            with autocast(dtype=torch.bfloat16):  # bf16 自动混合精度
                t = torch.randint(0, cldm_without_ddp.num_timesteps, (z_0.shape[0],), device=device).long()
                loss, _ = cldm_without_ddp.p_losses(z_0, cond, t)
            optimizer.zero_grad()
            # loss.backward()
            # optimizer.step()
            scaler.scale(loss).backward()  # 使用 GradScaler 缩放损失
            scaler.step(optimizer)
            scaler.update()

            global_step += 1
            step_loss.append(loss.item())
            epoch_loss.append(loss.item())
            pbar.update(1)
            pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")

            # Log loss values
            if rank == 0 and global_step % args.log_every == 0 and global_step > 0:
                avg_loss = np.mean(step_loss)
                step_loss.clear()
                writer.add_scalar("loss/loss_simple_step", avg_loss, global_step)

            # Save checkpoint
            if rank == 0 and global_step % args.ckpt_every == 0 and global_step > 0:
                # Create a checkpoint dictionary
                checkpoint = {
                    'model_state_dict': cldm_without_ddp.control_model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),  # Save optimizer state
                    'scaler_state_dict': scaler.state_dict(),  # Save GradScaler state
                    'global_step': global_step,  # Save current iteration
                    'epoch': epoch,  # Save current epoch
                }
                ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
                torch.save(checkpoint, ckpt_path)

            if rank == 0 and (global_step % args.image_every == 0 or global_step <= 1):
                eta = args.eta
                ddim_steps = args.ddim_steps
                cldm_without_ddp.eval()
                print("Logging images...")
                shape = (4, H // 8, W // 8)
                vis_feat = features_not_zero[0].unsqueeze(0)
                vis_txt = prompt[0]
                # print("features shape: ", vis_feat.shape)
                # print("txt: ", vis_txt)
                # Log the text to TensorBoard
                # writer.add_text("text/prompt", vis_txt, global_step)
                with torch.no_grad():
                    with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                        log_cond = cldm_without_ddp.prepare_condition(vis_txt, vis_feat) # feat not zero
                        samples, _ = ddim_sampler.sample(ddim_steps, 1, shape, log_cond, verbose=False, eta=eta)
                        x_samples = cldm_without_ddp.decode_first_stage(samples)
                # torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}.png")
                        x_samples = (x_samples + 1) / 2
                # torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}_norm.png")
                        uc_cross = cldm_without_ddp.get_unconditional_conditioning(1)
                        uc_feat = torch.zeros_like(vis_feat)
                        uc_full = {"c_crossattn": [uc_cross], "c_concat": uc_feat}

                        samples_cfg, _ = ddim_sampler.sample(ddim_steps, 1, shape, log_cond, verbose=False, eta=eta, 
                                                     unconditional_guidance_scale=args.unconditional_guidance_scale,
                                                     unconditional_conditioning=uc_full)
                        x_samples_cfg = cldm_without_ddp.decode_first_stage(samples_cfg)
                        x_samples_cfg = (x_samples_cfg + 1) / 2

                        samples_uncond, _ = ddim_sampler.sample(ddim_steps, 1, shape, uc_full, verbose=False, eta=eta)
                        x_samples_uncond = cldm_without_ddp.decode_first_stage(samples_uncond)
                        x_samples_uncond = (x_samples_uncond + 1) / 2

                log_features = visualize_features(vis_feat)
                for tag, image in [
                        ("image/samples", x_samples), 
                        ("image/samples_cfg", x_samples_cfg), 
                        ("image/samples_uncond", x_samples_uncond), 
                        ("image/gt", gt[0]), ("image/condition", log_features), 
                        ("image/hint", hint[0]),
                    ]:
                    # Convert BFloat16 images to float32 before logging
                    image = image.to(torch.float32)  # Alternatively, you can convert to uint8 if required
                    writer.add_image(tag, make_grid(image, nrow=1), global_step)
                cldm_without_ddp.train()
            if global_step == max_steps:
                break
        
        pbar.close()
        epoch += 1

        if rank == 0:
            avg_epoch_loss = np.mean(epoch_loss)
            epoch_loss.clear()
            writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step)
            # logging.info(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {avg_epoch_loss:.6f}")

    logging.info("done!")
    if rank == 0:
        writer.close()
    if args.distributed:
            dist.barrier()

if __name__ == '__main__':
    parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
    args = parser.parse_args()
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    main(args)