DiffICM / 4_ControlModule /4_train_control_module.py
Qiyp's picture
code of stage1 & 3, remove large files
1633fcc
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from torch.cuda.amp import GradScaler, autocast
from torchvision.utils import make_grid
import importlib
import logging
import torch.nn as nn
import sys
from typing import Iterable, Optional
import logging
import torch.distributed as dist
import os
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
import matplotlib.pyplot as plt
from utils.util import show_params, visualize_features, init_distributed_mode, get_rank, get_world_size
from dataset.build_dataset import CustomCocoDataset
from omegaconf import OmegaConf
from model import ControlLDM, Diffusion
from utils.common import instantiate_from_config
from utils.sampler import SpacedSampler
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--bce-loss', action='store_true')
parser.add_argument('--unscale-lr', action='store_true')
# Feature extractor parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str)
parser.add_argument('--target_model', default='deit_base_patch16_224', type=str)
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# CLDM parameters
parser.add_argument("--config", type=str, required=True)
parser.add_argument('--total_train_steps', default=300000, type=int)
parser.add_argument('--resume_path', default='', help='resume from checkpoint for controlnet')
parser.add_argument('--cldm_learning_rate', default=1e-4, type=float, help='learning rate for controlnet')
parser.add_argument('--sd_locked', default=True, help='whether to lock the sd of controlnet')
parser.add_argument('--only_mid_control', default=False, help='only control the middle layers of controlnet')
parser.add_argument('--cldm_yaml', default='./models/cldm_v15.yaml', help='yaml file for controlnet')
parser.add_argument('--exp_dir', default='./exp', help='experiment directory')
parser.add_argument('--image_floder', default='./data', help='training image floder')
parser.add_argument("--log_every", default=20, type=int, help="log every n steps")
parser.add_argument("--ckpt_every", default=1000, type=int, help="save checkpoint every n steps")
parser.add_argument("--image_every", default=1000, type=int, help="log image every n steps")
# parser.add_argument('--controlnet_dir', default='', type=str, help='resume from checkpoint for controlnet')
parser.add_argument('--global_step', default=0, type=int, help='global step')
parser.add_argument('--ddim_steps', default=50, type=int, help='ddim steps')
parser.add_argument('--eta', default=0, type=float, help='ddim eta')
parser.add_argument('--unconditional_guidance_scale', default=1.25, type=float, help='unconditional guidance scale')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=4e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
help='Color jitter factor (default: 0.3)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--train-mode', action='store_true')
parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
parser.set_defaults(train_mode=True)
parser.add_argument('--ThreeAugment', action='store_true') #3augment
parser.add_argument('--src', action='store_true') #simple random crop
# add dataset parameters
parser.add_argument('--global_crops_size', '--img_size', default=224, type=int,
help="this should be equal to image size")
parser.add_argument('--patch_size', default=16, type=int,
help="patch size for vit patch embedding")
# add masking parameter
parser.add_argument('--mask_ratio', default=(0.1, 0.5), type=float, nargs='+',
help="mask ratio can be either a value or a range")
parser.add_argument('--mask_probability', default=0., type=float,
help="how many samples with be applied with masking")
parser.add_argument('--mask_first_n', action='store_true',
help="mask the first n sample to avoid shuffling. Needed for MAE-style encoder")
parser.add_argument('--clone_batch', default=1, type=int,
help="how many times to clone the batch for masking (default: 1, not cloning)")
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='base', type=str)
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
parser.add_argument('--lambda_token', type=float, default=1.0)
parser.add_argument('--lambda_fea', type=float, default=1.0)
parser.add_argument('--lambda_patch', type=float, default=1.0)
# * Cosub params
parser.add_argument('--cosub', action='store_true')
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--attn-only', action='store_true')
parser.add_argument('--weight_inherit', default='')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'IMNET_ibot', 'IMNET_ibot_aug', 'IMNET_ibot_fast_aug', 'INAT', 'INAT19', 'IMNET_L', 'IMNET_L_ibot'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='/data1/qiyp/Proteus-pytorch/pretrain/log/DINOv2_training/log',
type=str, help='saving logging info every 20 iters')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=231, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def setup_logger(log_dir, rank=0):
if rank != 0:
return # 只有主进程(rank 0)配置日志记录器
log_formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s")
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
log_file_handler = logging.FileHandler(log_dir, encoding='utf-8')
log_file_handler.setFormatter(log_formatter)
root_logger.addHandler(log_file_handler)
log_stream_handler = logging.StreamHandler(sys.stdout)
log_stream_handler.setFormatter(log_formatter)
root_logger.addHandler(log_stream_handler)
logging.info('Logging file is %s' % log_dir)
def main(args):
init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# 获取当前进程的 rank
rank = dist.get_rank() if dist.is_initialized() else 0
# set up logger
os.makedirs(args.log_dir, exist_ok=True)
setup_logger(args.log_dir + '/' + time.strftime('%Y%m%d_%H%M%S') + '.log', rank)
logging.info('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
logging.info("{}".format(args).replace(', ', ',\n') + '\n')
# set_seed(231)
# fix the seed for reproducibility
seed = args.seed + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
# Setup an experiment folder
exp_dir = args.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
logging.info(f"Experiment directory created at {exp_dir}")
# Create Dataset
img_folder = args.image_floder
dataset = CustomCocoDataset(img_folder)
logging.info(f"Loaded train dataset with {len(dataset)} samples")
# Distributed Sampler
if args.distributed:
num_tasks = get_world_size()
global_rank = get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset)
logging.info("Sampler_train = %s" % str(sampler_train))
# Dataloader
dataloader = DataLoader(
dataset, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=True)
logging.info('Dataloader created')
# ========== create IF model ========== #
logging.info(f"# ===== Creating Feature Extractor: {args.model} ===== #")
meta_arch_module = importlib.import_module(args.model) # models_proteus_dinov2
MetaArch = meta_arch_module.MetaArch
model = MetaArch(args)
logging.info("Model = %s" % str(model))
if args.finetune:
checkpoint = torch.load(args.finetune, map_location='cpu')
if 'state_dict' in checkpoint:
pretrained_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
pretrained_dict = checkpoint['model']
else:
pretrained_dict = checkpoint
missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
logging.info('Finetuning from %s' % args.finetune)
logging.info('missing_keys: %s' % str(missing_keys))
logging.info('unexpected_keys: %s' % str(unexpected_keys))
if args.attn_only:
for name_p,p in model.named_parameters():
if '.attn.' in name_p:
p.requires_grad = True
else:
p.requires_grad = False
try:
model.head.weight.requires_grad = True
model.head.bias.requires_grad = True
except:
model.fc.weight.requires_grad = True
model.fc.bias.requires_grad = True
try:
model.pos_embed.requires_grad = True
except:
print('no position encoding')
try:
for p in model.patch_embed.parameters():
p.requires_grad = False
except:
print('no patch embed')
model.to(device)
model.eval()
# ========= create cldm ========= #
cfg = OmegaConf.load(args.config)
cldm: ControlLDM = instantiate_from_config(cfg.model.cldm)
sd = torch.load(cfg.train.sd_path, map_location="cpu")["state_dict"]
unused = cldm.load_pretrained_sd(sd)
logging.info(f"strictly load pretrained SD weight from {cfg.train.sd_path}\n"
f"unused weights: {unused}")
if cfg.train.resume:
ckpt = torch.load(cfg.train.resume, map_location="cpu")
cldm_state_dict = ckpt['model_state_dict']
cldm.load_controlnet_from_ckpt(cldm_state_dict)
logging.info(f"strictly load controlnet weight from checkpoint: {cfg.train.resume}")
if 'global_step' in ckpt:
global_step = ckpt['global_step']
if 'epoch' in ckpt:
epoch = ckpt['epoch']
logging.info(f"Resumed from global step {global_step}, epoch {epoch}")
else:
init_with_new_zero, init_with_scratch = cldm.load_controlnet_from_unet()
logging.info(f"strictly load controlnet weight from pretrained SD\n"
f"weights initialized with newly added zeros: {init_with_new_zero}\n"
f"weights initialized from scratch: {init_with_scratch}")
global_step = 0
epoch = 0
cldm = cldm.to(device)
if args.distributed:
cldm = torch.nn.parallel.DistributedDataParallel(cldm, device_ids=[args.gpu], find_unused_parameters=True)
cldm_without_ddp = cldm.module
else:
cldm_without_ddp = cldm
diffusion: Diffusion = instantiate_from_config(cfg.model.diffusion)
# Setup optimizer:
optimizer = torch.optim.AdamW(cldm_without_ddp.controlnet.parameters(), lr=args.cldm_learning_rate)
if cfg.train.resume:
checkpoint = torch.load(cfg.train.resume, map_location="cpu")
# 恢复优化器状态
if 'optimizer_state_dict' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
logging.info(f"Optimizer state loaded from checkpoint: {cfg.train.resume}")
show_params(cldm_without_ddp.controlnet)
ddim_sampler = SpacedSampler(diffusion.betas)
logging.info("# ========== Building model done! ========== #")
# Preparation for training:
cldm_without_ddp.train()
diffusion.to(device)
# 使用 GradScaler 进行混合精度训练
scaler = GradScaler(enabled=True)
if cfg.train.resume:
checkpoint = torch.load(cfg.train.resume, map_location="cpu")
# 恢复优化器状态
if 'scaler_state_dict' in checkpoint:
scaler.load_state_dict(checkpoint['scaler_state_dict']) # Load GradScaler state
logging.info(f"Loss Scaler state loaded from checkpoint: {cfg.train.resume}")
max_steps = args.total_train_steps
step_loss = []
epoch_loss = []
# Create SummaryWriter only in the main process
if rank == 0:
writer = SummaryWriter(exp_dir)
logging.info(f"Training for {max_steps} steps...")
while global_step < max_steps:
pbar = tqdm(iterable=dataloader, unit="batch")
for batch in dataloader:
if args.distributed:
sampler_train.set_epoch(epoch)
gt = batch["jpg"].to(device)
hint = batch["hint"].to(device)
prompt = batch["txt"]
_, _, h, w = hint.shape
_, _, H, W = gt.shape
with torch.no_grad():
with autocast(dtype=torch.bfloat16): # 使用 bf16 自动混合精度
# z_0 = cldm_without_ddp.get_latent(2 * gt - 1) # rescale to [-1, 1]
z_0 = cldm_without_ddp.vae_encode(2 * gt - 1)
features_dict = model.student.backbone(hint, is_training=True)
features = features_dict['x_norm_patchtokens']
features, _ = model.info_bottleneck(features, is_training=False)
features = features.view(-1, h//14, w//14, features.shape[2]) # [B, h, w, c]
features = features.permute(0, 3, 1, 2)
features = (features - features.mean()) / features.std()
features = torch.clamp(features, -5, 5)
features_not_zero = features
if torch.rand(1).item() < 0.1: # 10% of the time, set features to zero
features = torch.zeros_like(features)
cond = cldm_without_ddp.prepare_condition(features, prompt) # cond["c_txt"]: txt embed, cond["c_img"]: features
with autocast(dtype=torch.bfloat16): # bf16 自动混合精度
# t = torch.randint(0, cldm_without_ddp.num_timesteps, (z_0.shape[0],), device=device).long()
t = torch.randint(0, diffusion.num_timesteps, (z_0.shape[0],), device=device).long()
# loss, _ = cldm_without_ddp.p_losses(z_0, cond, t)
loss = diffusion.p_losses(cldm_without_ddp, z_0, t, cond)
optimizer.zero_grad()
# loss.backward()
# optimizer.step()
scaler.scale(loss).backward() # 使用 GradScaler 缩放损失
scaler.step(optimizer)
scaler.update()
# print("Gradient for input_hint_block:")
# for name, param in cldm_without_ddp.controlnet.input_hint_block.named_parameters():
# if param.grad is not None:
# print(f"{name} grad: {param.grad}")
# else:
# print(f"{name} grad is None")
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")
# Log loss values
if rank == 0 and global_step % args.log_every == 0 and global_step > 0:
avg_loss = np.mean(step_loss)
step_loss.clear()
writer.add_scalar("loss/loss_simple_step", avg_loss, global_step)
# Save checkpoint
if rank == 0 and global_step % args.ckpt_every == 0 and global_step > 0:
# Create a checkpoint dictionary
checkpoint = {
'model_state_dict': cldm_without_ddp.controlnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(), # Save optimizer state
'scaler_state_dict': scaler.state_dict(), # Save GradScaler state
'global_step': global_step, # Save current iteration
'epoch': epoch, # Save current epoch
}
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if rank == 0 and (global_step % args.image_every == 0 or global_step <= 1):
eta = args.eta
ddim_steps = args.ddim_steps
cldm_without_ddp.eval()
N = 1
log_features = features_not_zero[:N]
log_cond = cldm_without_ddp.prepare_condition(log_features, prompt[:N])
log_uncond = cldm_without_ddp.prepare_condition(torch.zeros_like(log_features), prompt[:N])
log_gt = gt[:N]
log_hint = hint[:N]
# shape = (4, H // 8, W // 8)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
z = ddim_sampler.sample(
model=cldm_without_ddp, device=device, steps=50, batch_size=len(log_gt), x_size=z_0.shape[1:],
cond=log_cond, uncond=None, cfg_scale=1.0, x_T=None
)
x_samples = cldm_without_ddp.vae_decode(z)
x_samples = (x_samples + 1) / 2
z_cfg = ddim_sampler.sample(
model=cldm_without_ddp, device=device, steps=50, batch_size=len(log_gt), x_size=z_0.shape[1:],
cond=log_cond, uncond=log_uncond, cfg_scale=args.unconditional_guidance_scale, x_T=None
)
x_samples_cfg = cldm_without_ddp.vae_decode(z_cfg)
x_samples_cfg = (x_samples_cfg + 1) / 2
vis_features = visualize_features(log_features)
for tag, image in [
("image/samples", x_samples),
("image/samples_cfg", x_samples_cfg),
("image/gt", log_gt), ("image/condition", vis_features),
("image/hint", log_hint),
]:
# Convert BFloat16 images to float32 before logging
image = image.to(torch.float32) # Alternatively, you can convert to uint8 if required
writer.add_image(tag, make_grid(image, nrow=1), global_step)
cldm_without_ddp.train()
if global_step == max_steps:
break
pbar.close()
epoch += 1
if rank == 0:
avg_epoch_loss = np.mean(epoch_loss)
epoch_loss.clear()
writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step)
logging.info(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {avg_epoch_loss:.6f}")
logging.info("done!")
if rank == 0:
writer.close()
if args.distributed:
dist.barrier()
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)