# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json from pathlib import Path from timm.utils import NativeScaler, get_state_dict, ModelEma from torchvision.utils import make_grid import importlib import utils import logging import torch.nn as nn import sys from typing import Iterable, Optional import utils import logging import torch.distributed as dist import os from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torch.utils.tensorboard import SummaryWriter from pycocotools.coco import COCO from PIL import Image, ImageDraw, ImageFont from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler from tqdm import tqdm import matplotlib.pyplot as plt import torchvision def get_args_parser(): parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False) parser.add_argument('--batch-size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--bce-loss', action='store_true') parser.add_argument('--unscale-lr', action='store_true') # Feature extractor parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str) parser.add_argument('--target_model', default='deit_base_patch16_224', type=str) parser.add_argument('--input-size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--model-ema', action='store_true') parser.add_argument('--no-model-ema', action='store_false', dest='model_ema') parser.set_defaults(model_ema=True) parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='') # CLDM parameters parser.add_argument('--total_train_steps', default=300000, type=int) parser.add_argument('--resume_path', default='', help='resume from checkpoint for controlnet') parser.add_argument('--cldm_learning_rate', default=1e-4, type=float, help='learning rate for controlnet') parser.add_argument('--sd_locked', default=True, help='whether to lock the sd of controlnet') parser.add_argument('--only_mid_control', default=False, help='only control the middle layers of controlnet') parser.add_argument('--cldm_yaml', default='./models/cldm_v15.yaml', help='yaml file for controlnet') parser.add_argument('--exp_dir', default='./exp_nn', help='experiment directory') parser.add_argument('--image_floder', default='./data', help='training image floder') parser.add_argument('--txt_path', default='./data', help='training txt path') parser.add_argument("--log_every", default=20, type=int, help="log every n steps") parser.add_argument("--ckpt_every", default=1000, type=int, help="save checkpoint every n steps") parser.add_argument("--image_every", default=1000, type=int, help="log image every n steps") parser.add_argument('--controlnet_dir', default='', type=str, help='resume from checkpoint for controlnet') parser.add_argument('--global_step', default=0, type=int, help='global step') parser.add_argument('--ddim_steps', default=50, type=int, help='ddim steps') parser.add_argument('--eta', default=0, type=float, help='ddim eta') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.05, help='weight decay (default: 0.05)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=4e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT', help='Color jitter factor (default: 0.3)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) parser.add_argument('--train-mode', action='store_true') parser.add_argument('--no-train-mode', action='store_false', dest='train_mode') parser.set_defaults(train_mode=True) parser.add_argument('--ThreeAugment', action='store_true') #3augment parser.add_argument('--src', action='store_true') #simple random crop # add dataset parameters parser.add_argument('--global_crops_size', '--img_size', default=224, type=int, help="this should be equal to image size") parser.add_argument('--patch_size', default=16, type=int, help="patch size for vit patch embedding") # add masking parameter parser.add_argument('--mask_ratio', default=(0.1, 0.5), type=float, nargs='+', help="mask ratio can be either a value or a range") parser.add_argument('--mask_probability', default=0., type=float, help="how many samples with be applied with masking") parser.add_argument('--mask_first_n', action='store_true', help="mask the first n sample to avoid shuffling. Needed for MAE-style encoder") parser.add_argument('--clone_batch', default=1, type=int, help="how many times to clone the batch for masking (default: 1, not cloning)") # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0. (default: 0.8)') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # Distillation parameters parser.add_argument('--teacher-model', default='base', type=str) parser.add_argument('--teacher-path', type=str, default='') parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="") parser.add_argument('--distillation-alpha', default=0.5, type=float, help="") parser.add_argument('--distillation-tau', default=1.0, type=float, help="") parser.add_argument('--lambda_token', type=float, default=1.0) parser.add_argument('--lambda_fea', type=float, default=1.0) parser.add_argument('--lambda_patch', type=float, default=1.0) # * Cosub params parser.add_argument('--cosub', action='store_true') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--attn-only', action='store_true') parser.add_argument('--weight_inherit', default='') # Dataset parameters parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'IMNET_ibot', 'IMNET_ibot_aug', 'IMNET_ibot_fast_aug', 'INAT', 'INAT19', 'IMNET_L', 'IMNET_L_ibot'], type=str, help='Image Net dataset path') parser.add_argument('--inat-category', default='name', choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'], type=str, help='semantic granularity') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default='/data1/qiyp/Proteus-pytorch/pretrain/log/DINOv2_training/log', type=str, help='saving logging info every 20 iters') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation") parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=8, type=int) parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training') parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser def setup_logger(log_dir, rank=0): if rank != 0: return # 只有主进程(rank 0)配置日志记录器 log_formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s") root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) log_file_handler = logging.FileHandler(log_dir, encoding='utf-8') log_file_handler.setFormatter(log_formatter) root_logger.addHandler(log_file_handler) log_stream_handler = logging.StreamHandler(sys.stdout) log_stream_handler.setFormatter(log_formatter) root_logger.addHandler(log_stream_handler) logging.info('Logging file is %s' % log_dir) class CustomCocoDataset(Dataset): def __init__(self, json_file, img_folder, common_transform=None): self.coco = COCO(json_file) self.img_folder = img_folder self.ids = list(self.coco.imgToAnns.keys()) self.common_transform = common_transform def __len__(self): return len(self.ids) def __getitem__(self, index): img_id = self.ids[index] img_info = self.coco.loadImgs(img_id)[0] path = img_info['file_name'] img_path = os.path.join(self.img_folder, path) image = Image.open(img_path).convert('RGB') # Perform a random crop i, j, h, w = transforms.RandomResizedCrop.get_params( image, scale=(0.95, 1.0), ratio=(1.0, 1.0)) # Ensure the same crop for both images cropped_image = transforms.functional.crop(image, i, j, h, w) # Resize to different resolutions jpg_image = transforms.functional.resize(cropped_image, 512, interpolation=transforms.InterpolationMode.BICUBIC) hint_image = transforms.functional.resize(cropped_image, 448, interpolation=transforms.InterpolationMode.BICUBIC) # Apply common transformations if self.common_transform is not None: jpg_image = self.common_transform(jpg_image) hint_image = self.common_transform(hint_image) ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) # captions = [ann['caption'] for ann in anns] captions = [ann['caption'].replace('\n', ' ') for ann in anns] combined_caption = ' '.join(captions) return dict(jpg=jpg_image, txt=combined_caption, hint=hint_image) def show_params(model, show_learnable=True): params = set() for name, param in model.named_parameters(): if param.requires_grad == show_learnable: params.add(name) if show_learnable: logging.info("Parameters to be updated: ") else: logging.info("Parameters that are not being updated: ") for each in params: logging.info('\t{}'.format(str(each))) logging.info('\n') def log_txt_as_img(wh, xc): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) # font = ImageFont.truetype('font/DejaVuSans.ttf', size=size) font = ImageFont.load_default() nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def visualize_features(features): # Assuming features are of shape (batch_size, num_features, height, width) batch_size, num_features, height, width = features.shape # Normalize the feature maps to the range [0, 1] vis = features.mean(dim=1, keepdim=True) vis = vis - vis.min() vis = vis / vis.max() # Squeeze the channel dimension vis = vis.squeeze(1).cpu().detach().numpy() # Apply a colormap (e.g., viridis) to convert it to RGB vis_colored = np.zeros((batch_size, height, width, 3)) for i in range(batch_size): vis_colored[i] = plt.cm.viridis(vis[i])[:, :, :3] # Drop the alpha channel # Convert vis_colored to a tensor and save using torchvision vis_colored = torch.tensor(vis_colored).permute(0, 3, 1, 2) # Convert to (batch, channels, height, width) return vis_colored def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # 获取当前进程的 rank rank = dist.get_rank() if dist.is_initialized() else 0 # set up logger os.makedirs(args.log_dir, exist_ok=True) setup_logger(args.log_dir + '/' + time.strftime('%Y%m%d_%H%M%S') + '.log', rank) logging.info('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) logging.info("{}".format(args).replace(', ', ',\n') + '\n') # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True # Setup an experiment folder exp_dir = args.exp_dir os.makedirs(exp_dir, exist_ok=True) ckpt_dir = os.path.join(exp_dir, "checkpoints") os.makedirs(ckpt_dir, exist_ok=True) logging.info(f"Experiment directory created at {exp_dir}") # dist.barrier() # wait for all processes to create the experiment directory # Create Dataset common_transforms = transforms.Compose([ transforms.ToTensor() ]) txt_path = args.txt_path img_folder = args.image_floder dataset = CustomCocoDataset(txt_path, img_folder, common_transform=common_transforms) logging.info(f"Loaded train dataset with {len(dataset)} samples") # Distributed Sampler if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True ) else: sampler_train = torch.utils.data.RandomSampler(dataset) logging.info("Sampler_train = %s" % str(sampler_train)) # Dataloader dataloader = DataLoader( dataset, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True) logging.info('Dataloader created') # ========== create IF model ========== # logging.info(f"# ===== Creating Feature Extractor: {args.model} ===== #") # print(f"Creating model: {args.model}") # models_proteus_dinov2 meta_arch_module = importlib.import_module(args.model) MetaArch = meta_arch_module.MetaArch model = MetaArch(args) logging.info("Model = %s" % str(model)) if args.finetune: checkpoint = torch.load(args.finetune, map_location='cpu') if 'state_dict' in checkpoint: pretrained_dict = checkpoint['state_dict'] elif 'model' in checkpoint: pretrained_dict = checkpoint['model'] else: pretrained_dict = checkpoint missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False) logging.info('Finetuning from %s' % args.finetune) logging.info('missing_keys: %s' % str(missing_keys)) logging.info('unexpected_keys: %s' % str(unexpected_keys)) if args.attn_only: for name_p,p in model.named_parameters(): if '.attn.' in name_p: p.requires_grad = True else: p.requires_grad = False try: model.head.weight.requires_grad = True model.head.bias.requires_grad = True except: model.fc.weight.requires_grad = True model.fc.bias.requires_grad = True try: model.pos_embed.requires_grad = True except: print('no position encoding') try: for p in model.patch_embed.parameters(): p.requires_grad = False except: print('no patch embed') model.to(device) model.eval() # ========== create cldm ========== # logging.info(f"# ===== Creating ControlNet: ===== #") cldm = create_model(args.cldm_yaml).cpu() cldm.load_state_dict(load_state_dict(args.resume_path, location='cpu')) cldm.learning_rate = args.cldm_learning_rate cldm.sd_locked = args.sd_locked cldm.only_mid_control = args.only_mid_control cldm = cldm.to(device) global_step = args.global_step epoch = 0 if args.controlnet_dir: logging.info(f"Resuming controlnet from {args.controlnet_dir}") checkpoint = torch.load(args.controlnet_dir, map_location='cpu') cldm_state_dict = checkpoint['model_state_dict'] cldm.control_model.load_state_dict(cldm_state_dict) # 恢复 global step 和 epoch if 'global_step' in checkpoint: global_step = checkpoint['global_step'] else: global_step = 0 # 如果没有保存 global_step,默认设置为 0 if 'epoch' in checkpoint: epoch = checkpoint['epoch'] else: epoch = 0 # 如果没有保存 epoch,默认设置为 0 logging.info(f"Resumed from global step {global_step}, epoch {epoch}") else: global_step = 0 epoch = 0 if args.distributed: cldm = torch.nn.parallel.DistributedDataParallel(cldm, device_ids=[args.gpu], find_unused_parameters=True) cldm_without_ddp = cldm.module else: cldm_without_ddp = cldm optimizer = cldm_without_ddp.configure_optimizers() if args.controlnet_dir: checkpoint = torch.load(args.controlnet_dir, map_location='cpu') # 恢复优化器状态 if 'optimizer_state_dict' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer_state_dict']) ddim_sampler = DDIMSampler(cldm_without_ddp) # show_params(cldm_without_ddp.control_model) logging.info("# ========== Building model done! ========== #") max_steps = args.total_train_steps step_loss = [] # epoch = 0 epoch_loss = [] # Create SummaryWriter only in the main process # if rank == 0: # writer = SummaryWriter(exp_dir) logging.info(f"Training for {max_steps} steps...") cldm_without_ddp.train() while global_step < max_steps: pbar = tqdm(iterable=dataloader, unit="batch") for batch in dataloader: if args.distributed: sampler_train.set_epoch(epoch) gt = batch["jpg"].to(device) hint = batch["hint"].to(device) prompt = batch["txt"] _, _, h, w = hint.shape _, _, H, W = gt.shape with torch.no_grad(): z_0 = cldm_without_ddp.get_latent(gt) features_dict = model.student.backbone(hint, is_training=True) features = features_dict['x_norm_patchtokens'] features, _ = model.info_bottleneck(features, is_training=False) features = features.view(-1, h//14, w//14, features.shape[2]) # [B, h, w, c] features = features.permute(0, 3, 1, 2) features = (features - features.mean()) / features.std() features = torch.clamp(features, -5, 5) cond = cldm_without_ddp.prepare_condition(prompt, features) # cond["c_crossattn"]: txt embed, cond["c_concat"]: features t = torch.randint(0, cldm_without_ddp.num_timesteps, (z_0.shape[0],), device=device).long() loss, _ = cldm_without_ddp.p_losses(z_0, cond, t) optimizer.zero_grad() loss.backward() optimizer.step() global_step += 1 step_loss.append(loss.item()) epoch_loss.append(loss.item()) pbar.update(1) pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}") # Log loss values if rank == 0 and global_step % args.log_every == 0 and global_step > 0: avg_loss = np.mean(step_loss) step_loss.clear() # writer.add_scalar("loss/loss_simple_step", avg_loss, global_step) # logging.info(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {avg_loss:.6f}") # Save checkpoint if rank == 0 and global_step % args.ckpt_every == 0 and global_step > 0: # Create a checkpoint dictionary checkpoint = { 'model_state_dict': cldm_without_ddp.control_model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), # Save optimizer state 'global_step': global_step, # Save current iteration 'epoch': epoch, # Save current epoch } # checkpoint = cldm_without_ddp.control_model.state_dict() ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt" torch.save(checkpoint, ckpt_path) if rank == 0 and (global_step % args.image_every == 0 or global_step == 1): eta = args.eta ddim_steps = args.ddim_steps cldm_without_ddp.eval() print("Logging images...") shape = (4, H // 8, W // 8) vis_feat = features[0].unsqueeze(0) vis_txt = prompt[0] print("features shape: ", vis_feat.shape) print("txt: ", vis_txt) log_cond = cldm_without_ddp.prepare_condition(vis_txt, vis_feat) samples, intermediates = ddim_sampler.sample(ddim_steps, 1, shape, log_cond, verbose=False, eta=eta) x_samples = cldm_without_ddp.decode_first_stage(samples) torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}.png") x_samples = (x_samples + 1) / 2 torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}_norm.png") log_features = visualize_features(vis_feat) # for tag, image in [ # ("image/samples", x_samples), # ("image/gt", gt[0]), ("image/condition", log_features), # ("image/hint", hint[0]), # ]: # writer.add_image(tag, make_grid(image, nrow=1), global_step) cldm_without_ddp.train() if global_step == max_steps: break pbar.close() epoch += 1 if rank == 0: avg_epoch_loss = np.mean(epoch_loss) epoch_loss.clear() # writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step) # logging.info(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {avg_epoch_loss:.6f}") logging.info("done!") # if rank == 0: # writer.close() # Ensure all processes wait before ending dist.barrier() if __name__ == '__main__': parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)