update config, split in 2GB
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- cache_autogptq_cuda_256.cpp +199 -0
- cache_autogptq_cuda_kernel_256.cu +1709 -0
- config.json +5 -5
- configuration_qwen.py +1 -0
- cpp_kernels.py +1 -0
- generation_config.json +1 -2
- model-00001-of-00019.safetensors → model-00001-of-00082.safetensors +2 -2
- model-00002-of-00019.safetensors → model-00002-of-00082.safetensors +2 -2
- model-00003-of-00019.safetensors → model-00003-of-00082.safetensors +2 -2
- model-00004-of-00019.safetensors → model-00004-of-00082.safetensors +2 -2
- model-00005-of-00019.safetensors +0 -3
- model-00005-of-00082.safetensors +3 -0
- model-00006-of-00019.safetensors +0 -3
- model-00006-of-00082.safetensors +3 -0
- model-00007-of-00019.safetensors +0 -3
- model-00007-of-00082.safetensors +3 -0
- model-00008-of-00019.safetensors +0 -3
- model-00008-of-00082.safetensors +3 -0
- model-00009-of-00019.safetensors +0 -3
- model-00009-of-00082.safetensors +3 -0
- model-00010-of-00019.safetensors +0 -3
- model-00010-of-00082.safetensors +3 -0
- model-00011-of-00019.safetensors +0 -3
- model-00011-of-00082.safetensors +3 -0
- model-00012-of-00019.safetensors +0 -3
- model-00012-of-00082.safetensors +3 -0
- model-00013-of-00019.safetensors +0 -3
- model-00013-of-00082.safetensors +3 -0
- model-00014-of-00019.safetensors +0 -3
- model-00014-of-00082.safetensors +3 -0
- model-00015-of-00019.safetensors +0 -3
- model-00015-of-00082.safetensors +3 -0
- model-00016-of-00019.safetensors +0 -3
- model-00016-of-00082.safetensors +3 -0
- model-00017-of-00019.safetensors +0 -3
- model-00017-of-00082.safetensors +3 -0
- model-00018-of-00019.safetensors +0 -3
- model-00018-of-00082.safetensors +3 -0
- model-00019-of-00019.safetensors +0 -3
- model-00019-of-00082.safetensors +3 -0
- model-00020-of-00082.safetensors +3 -0
- model-00021-of-00082.safetensors +3 -0
- model-00022-of-00082.safetensors +3 -0
- model-00023-of-00082.safetensors +3 -0
- model-00024-of-00082.safetensors +3 -0
- model-00025-of-00082.safetensors +3 -0
- model-00026-of-00082.safetensors +3 -0
- model-00027-of-00082.safetensors +3 -0
- model-00028-of-00082.safetensors +3 -0
- model-00029-of-00082.safetensors +3 -0
cache_autogptq_cuda_256.cpp
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <torch/all.h>
|
| 2 |
+
#include <torch/python.h>
|
| 3 |
+
#include <c10/cuda/CUDAGuard.h>
|
| 4 |
+
|
| 5 |
+
// adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_256.cpp
|
| 6 |
+
void vecquant8matmul_cuda(
|
| 7 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 8 |
+
torch::Tensor scales, torch::Tensor zeros,
|
| 9 |
+
torch::Tensor g_idx
|
| 10 |
+
);
|
| 11 |
+
|
| 12 |
+
void vecquant8matmul(
|
| 13 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 14 |
+
torch::Tensor scales, torch::Tensor zeros,
|
| 15 |
+
torch::Tensor g_idx
|
| 16 |
+
) {
|
| 17 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 18 |
+
vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
void vecquant8matmul_batched_cuda(
|
| 22 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 23 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 24 |
+
);
|
| 25 |
+
|
| 26 |
+
void vecquant8matmul_batched(
|
| 27 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 28 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 29 |
+
) {
|
| 30 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 31 |
+
vecquant8matmul_batched_cuda(vec, mat, mul, scales, zeros);
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
void vecquant8matmul_batched_column_compression_cuda(
|
| 35 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 36 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 37 |
+
);
|
| 38 |
+
|
| 39 |
+
void vecquant8matmul_batched_column_compression(
|
| 40 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 41 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 42 |
+
) {
|
| 43 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 44 |
+
vecquant8matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
void vecquant4matmul_batched_cuda(
|
| 48 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 49 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 50 |
+
);
|
| 51 |
+
|
| 52 |
+
void vecquant4matmul_batched(
|
| 53 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 54 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 55 |
+
) {
|
| 56 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 57 |
+
vecquant4matmul_batched_cuda(vec, mat, mul, scales, zeros);
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
void vecquant4matmul_batched_column_compression_cuda(
|
| 61 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 62 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 63 |
+
);
|
| 64 |
+
|
| 65 |
+
void vecquant4matmul_batched_column_compression(
|
| 66 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 67 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 68 |
+
) {
|
| 69 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 70 |
+
vecquant4matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
void vecquant8matmul_batched_old_cuda(
|
| 74 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 75 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 76 |
+
);
|
| 77 |
+
|
| 78 |
+
void vecquant8matmul_batched_old(
|
| 79 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 80 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 81 |
+
) {
|
| 82 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 83 |
+
vecquant8matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
void vecquant4matmul_batched_old_cuda(
|
| 88 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 89 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 90 |
+
);
|
| 91 |
+
|
| 92 |
+
void vecquant4matmul_batched_old(
|
| 93 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 94 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 95 |
+
) {
|
| 96 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 97 |
+
vecquant4matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
void vecquant8matmul_batched_column_compression_old_cuda(
|
| 101 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 102 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 103 |
+
);
|
| 104 |
+
|
| 105 |
+
void vecquant8matmul_batched_column_compression_old(
|
| 106 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 107 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 108 |
+
) {
|
| 109 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 110 |
+
vecquant8matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
void vecquant4matmul_batched_column_compression_old_cuda(
|
| 114 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 115 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 116 |
+
);
|
| 117 |
+
|
| 118 |
+
void vecquant4matmul_batched_column_compression_old(
|
| 119 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 120 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 121 |
+
) {
|
| 122 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 123 |
+
vecquant4matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
void vecquant8matmul_batched_faster_cuda(
|
| 129 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 130 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 131 |
+
);
|
| 132 |
+
|
| 133 |
+
void vecquant8matmul_batched_faster(
|
| 134 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 135 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 136 |
+
) {
|
| 137 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 138 |
+
vecquant8matmul_batched_faster_cuda(vec, mat, mul, scales, zeros);
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
void vecquant8matmul_batched_faster_old_cuda(
|
| 143 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 144 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 145 |
+
);
|
| 146 |
+
|
| 147 |
+
void vecquant8matmul_batched_faster_old(
|
| 148 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 149 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 150 |
+
) {
|
| 151 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 152 |
+
vecquant8matmul_batched_faster_old_cuda(vec, mat, mul, scales, zeros);
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
void vecquant8matmul_batched_column_compression_faster_cuda(
|
| 156 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 157 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 158 |
+
);
|
| 159 |
+
|
| 160 |
+
void vecquant8matmul_batched_column_compression_faster(
|
| 161 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 162 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 163 |
+
) {
|
| 164 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 165 |
+
vecquant8matmul_batched_column_compression_faster_cuda(vec, mat, mul, scales, zeros);
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
void vecquant8matmul_batched_column_compression_faster_old_cuda(
|
| 170 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 171 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 172 |
+
);
|
| 173 |
+
|
| 174 |
+
void vecquant8matmul_batched_column_compression_faster_old(
|
| 175 |
+
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
|
| 176 |
+
torch::Tensor scales, torch::Tensor zeros
|
| 177 |
+
) {
|
| 178 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
|
| 179 |
+
vecquant8matmul_batched_column_compression_faster_old_cuda(vec, mat, mul, scales, zeros);
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 185 |
+
m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 186 |
+
m.def("vecquant8matmul_batched", &vecquant8matmul_batched, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 187 |
+
m.def("vecquant8matmul_batched_old", &vecquant8matmul_batched_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 188 |
+
m.def("vecquant8matmul_batched_faster", &vecquant8matmul_batched_faster, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 189 |
+
m.def("vecquant8matmul_batched_faster_old", &vecquant8matmul_batched_faster_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 190 |
+
m.def("vecquant4matmul_batched_old", &vecquant4matmul_batched_old, "Vector 4-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 191 |
+
m.def("vecquant8matmul_batched_column_compression", &vecquant8matmul_batched_column_compression, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 192 |
+
m.def("vecquant8matmul_batched_column_compression_old", &vecquant8matmul_batched_column_compression_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 193 |
+
m.def("vecquant8matmul_batched_column_compression_faster", &vecquant8matmul_batched_column_compression_faster, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 194 |
+
m.def("vecquant8matmul_batched_column_compression_faster_old", &vecquant8matmul_batched_column_compression_faster_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 195 |
+
m.def("vecquant4matmul_batched_column_compression_old", &vecquant4matmul_batched_column_compression_old, "Vector old 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 196 |
+
m.def("vecquant4matmul_batched", &vecquant4matmul_batched, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
|
| 197 |
+
m.def("vecquant4matmul_batched_column_compression", &vecquant4matmul_batched_column_compression, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
|
| 198 |
+
}
|
| 199 |
+
|
cache_autogptq_cuda_kernel_256.cu
ADDED
|
@@ -0,0 +1,1709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#define _CRT_SECURE_NO_WARNINGS
|
| 2 |
+
#include <torch/all.h>
|
| 3 |
+
#include <torch/python.h>
|
| 4 |
+
#include <cuda.h>
|
| 5 |
+
#include <cuda_runtime.h>
|
| 6 |
+
#include <cuda_fp16.h>
|
| 7 |
+
#include <stdint.h>
|
| 8 |
+
|
| 9 |
+
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
|
| 10 |
+
// adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
|
| 11 |
+
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
|
| 12 |
+
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
|
| 13 |
+
unsigned int old = *address_as_ui;
|
| 14 |
+
unsigned int assumed;
|
| 15 |
+
|
| 16 |
+
do {
|
| 17 |
+
assumed = old;
|
| 18 |
+
unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
|
| 19 |
+
hsum += val;
|
| 20 |
+
old = reinterpret_cast<size_t>(address) & 2
|
| 21 |
+
? (old & 0xffff) | (hsum << 16)
|
| 22 |
+
: (old & 0xffff0000) | hsum;
|
| 23 |
+
old = atomicCAS(address_as_ui, assumed, old);
|
| 24 |
+
|
| 25 |
+
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
| 26 |
+
} while (assumed != old);
|
| 27 |
+
}
|
| 28 |
+
__device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
|
| 29 |
+
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
|
| 30 |
+
unsigned int old = *address_as_ui;
|
| 31 |
+
unsigned int assumed;
|
| 32 |
+
|
| 33 |
+
do {
|
| 34 |
+
assumed = old;
|
| 35 |
+
__half_raw hsum;
|
| 36 |
+
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
|
| 37 |
+
half tmpres = __hadd(hsum, val);
|
| 38 |
+
hsum = __half_raw(tmpres);
|
| 39 |
+
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
|
| 40 |
+
old = atomicCAS(address_as_ui, assumed, old);
|
| 41 |
+
} while (assumed != old);
|
| 42 |
+
}
|
| 43 |
+
#endif
|
| 44 |
+
|
| 45 |
+
template <typename scalar_t>
|
| 46 |
+
__global__ void VecQuant8MatMulKernel(
|
| 47 |
+
const scalar_t* __restrict__ vec,
|
| 48 |
+
const int* __restrict__ mat,
|
| 49 |
+
scalar_t* __restrict__ mul,
|
| 50 |
+
const scalar_t* __restrict__ scales,
|
| 51 |
+
const int* __restrict__ zeros,
|
| 52 |
+
const int* __restrict__ g_idx,
|
| 53 |
+
int batch,
|
| 54 |
+
int vec_height,
|
| 55 |
+
int height,
|
| 56 |
+
int width,
|
| 57 |
+
int zero_width
|
| 58 |
+
);
|
| 59 |
+
|
| 60 |
+
template <typename scalar_t>
|
| 61 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel(
|
| 62 |
+
const scalar_t* __restrict__ vec,
|
| 63 |
+
const int* __restrict__ mat,
|
| 64 |
+
scalar_t* __restrict__ mul,
|
| 65 |
+
const scalar_t* __restrict__ scales,
|
| 66 |
+
const int* __restrict__ zeros,
|
| 67 |
+
int batch,
|
| 68 |
+
int heads,
|
| 69 |
+
int vec_row,
|
| 70 |
+
int height,
|
| 71 |
+
int width
|
| 72 |
+
);
|
| 73 |
+
|
| 74 |
+
template <typename scalar_t>
|
| 75 |
+
__global__ void VecQuant4BatchMatMulColumnCompressionKernel(
|
| 76 |
+
const scalar_t* __restrict__ vec,
|
| 77 |
+
const int* __restrict__ mat,
|
| 78 |
+
scalar_t* __restrict__ mul,
|
| 79 |
+
const scalar_t* __restrict__ scales,
|
| 80 |
+
const int* __restrict__ zeros,
|
| 81 |
+
int batch,
|
| 82 |
+
int heads,
|
| 83 |
+
int vec_row,
|
| 84 |
+
int height,
|
| 85 |
+
int width
|
| 86 |
+
);
|
| 87 |
+
|
| 88 |
+
template <typename scalar_t>
|
| 89 |
+
__global__ void VecQuant8BatchMatMulKernel(
|
| 90 |
+
const scalar_t* __restrict__ vec,
|
| 91 |
+
const int* __restrict__ mat,
|
| 92 |
+
scalar_t* __restrict__ mul,
|
| 93 |
+
const scalar_t* __restrict__ scales,
|
| 94 |
+
const int* __restrict__ zeros,
|
| 95 |
+
int batch,
|
| 96 |
+
int heads,
|
| 97 |
+
int vec_row,
|
| 98 |
+
int vec_height,
|
| 99 |
+
int height,
|
| 100 |
+
int width,
|
| 101 |
+
int zero_width
|
| 102 |
+
);
|
| 103 |
+
|
| 104 |
+
template <typename scalar_t>
|
| 105 |
+
__global__ void VecQuant4BatchMatMulKernel(
|
| 106 |
+
const scalar_t* __restrict__ vec,
|
| 107 |
+
const int* __restrict__ mat,
|
| 108 |
+
scalar_t* __restrict__ mul,
|
| 109 |
+
const scalar_t* __restrict__ scales,
|
| 110 |
+
const int* __restrict__ zeros,
|
| 111 |
+
int batch,
|
| 112 |
+
int heads,
|
| 113 |
+
int vec_row,
|
| 114 |
+
int vec_height,
|
| 115 |
+
int height,
|
| 116 |
+
int width,
|
| 117 |
+
int zero_width
|
| 118 |
+
);
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
template <typename scalar_t>
|
| 123 |
+
__global__ void VecQuant8BatchMatMulKernel_old(
|
| 124 |
+
const scalar_t* __restrict__ vec,
|
| 125 |
+
const uint8_t* __restrict__ mat,
|
| 126 |
+
scalar_t* __restrict__ mul,
|
| 127 |
+
const scalar_t* __restrict__ scales,
|
| 128 |
+
const scalar_t* __restrict__ zeros,
|
| 129 |
+
int batch,
|
| 130 |
+
int heads,
|
| 131 |
+
int vec_row,
|
| 132 |
+
int vec_height,
|
| 133 |
+
int height,
|
| 134 |
+
int width,
|
| 135 |
+
int zero_width
|
| 136 |
+
);
|
| 137 |
+
|
| 138 |
+
__global__ void VecQuant8BatchMatMulKernel_faster(
|
| 139 |
+
const half* __restrict__ vec,
|
| 140 |
+
const uint8_t* __restrict__ mat,
|
| 141 |
+
half* __restrict__ mul,
|
| 142 |
+
const half* __restrict__ scales,
|
| 143 |
+
const half* __restrict__ zeros,
|
| 144 |
+
int batch,
|
| 145 |
+
int heads,
|
| 146 |
+
int vec_row,
|
| 147 |
+
int vec_height,
|
| 148 |
+
int height,
|
| 149 |
+
int width,
|
| 150 |
+
int zero_width
|
| 151 |
+
);
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
__global__ void VecQuant8BatchMatMulKernel_faster_old(
|
| 156 |
+
const half* __restrict__ vec,
|
| 157 |
+
const uint8_t* __restrict__ mat,
|
| 158 |
+
half* __restrict__ mul,
|
| 159 |
+
const half* __restrict__ scales,
|
| 160 |
+
const half* __restrict__ zeros,
|
| 161 |
+
int batch,
|
| 162 |
+
int heads,
|
| 163 |
+
int vec_row,
|
| 164 |
+
int vec_height,
|
| 165 |
+
int height,
|
| 166 |
+
int width
|
| 167 |
+
);
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
template <typename scalar_t>
|
| 171 |
+
__global__ void VecQuant4BatchMatMulKernel_old(
|
| 172 |
+
const scalar_t* __restrict__ vec,
|
| 173 |
+
const uint8_t* __restrict__ mat,
|
| 174 |
+
scalar_t* __restrict__ mul,
|
| 175 |
+
const scalar_t* __restrict__ scales,
|
| 176 |
+
const scalar_t* __restrict__ zeros,
|
| 177 |
+
int batch,
|
| 178 |
+
int heads,
|
| 179 |
+
int vec_row,
|
| 180 |
+
int vec_height,
|
| 181 |
+
int height,
|
| 182 |
+
int width,
|
| 183 |
+
int zero_width
|
| 184 |
+
);
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
template <typename scalar_t>
|
| 188 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
|
| 189 |
+
const scalar_t* __restrict__ vec,
|
| 190 |
+
const uint8_t* __restrict__ mat,
|
| 191 |
+
scalar_t* __restrict__ mul,
|
| 192 |
+
const scalar_t* __restrict__ scales,
|
| 193 |
+
const scalar_t* __restrict__ zeros,
|
| 194 |
+
int batch,
|
| 195 |
+
int heads,
|
| 196 |
+
int vec_row,
|
| 197 |
+
int height,
|
| 198 |
+
int width
|
| 199 |
+
);
|
| 200 |
+
|
| 201 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
|
| 202 |
+
const half* __restrict__ vec,
|
| 203 |
+
const uint8_t* __restrict__ mat,
|
| 204 |
+
half* __restrict__ mul,
|
| 205 |
+
const half* __restrict__ scales,
|
| 206 |
+
const half* __restrict__ zeros,
|
| 207 |
+
int batch,
|
| 208 |
+
int heads,
|
| 209 |
+
int vec_row,
|
| 210 |
+
int height,
|
| 211 |
+
int width
|
| 212 |
+
);
|
| 213 |
+
|
| 214 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
|
| 215 |
+
const half* __restrict__ vec,
|
| 216 |
+
const uint8_t* __restrict__ mat,
|
| 217 |
+
half* __restrict__ mul,
|
| 218 |
+
const half* __restrict__ scales,
|
| 219 |
+
const half* __restrict__ zeros,
|
| 220 |
+
int batch,
|
| 221 |
+
int heads,
|
| 222 |
+
int vec_row,
|
| 223 |
+
int height,
|
| 224 |
+
int width
|
| 225 |
+
);
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
template <typename scalar_t>
|
| 229 |
+
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
|
| 230 |
+
const scalar_t* __restrict__ vec,
|
| 231 |
+
const uint8_t* __restrict__ mat,
|
| 232 |
+
scalar_t* __restrict__ mul,
|
| 233 |
+
const scalar_t* __restrict__ scales,
|
| 234 |
+
const scalar_t* __restrict__ zeros,
|
| 235 |
+
int batch,
|
| 236 |
+
int heads,
|
| 237 |
+
int vec_row,
|
| 238 |
+
int height,
|
| 239 |
+
int width
|
| 240 |
+
);
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
__global__ void VecQuant8BatchMatMulKernel_faster(
|
| 244 |
+
const half* __restrict__ vec,
|
| 245 |
+
const uint8_t* __restrict__ mat,
|
| 246 |
+
half* __restrict__ mul,
|
| 247 |
+
const half* __restrict__ scales,
|
| 248 |
+
const half* __restrict__ zeros,
|
| 249 |
+
int batch,
|
| 250 |
+
int heads,
|
| 251 |
+
int vec_row,
|
| 252 |
+
int vec_height,
|
| 253 |
+
int height,
|
| 254 |
+
int width
|
| 255 |
+
);
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
|
| 259 |
+
const half* __restrict__ vec,
|
| 260 |
+
const uint8_t* __restrict__ mat,
|
| 261 |
+
half* __restrict__ mul,
|
| 262 |
+
const half* __restrict__ scales,
|
| 263 |
+
const half* __restrict__ zeros,
|
| 264 |
+
int batch,
|
| 265 |
+
int heads,
|
| 266 |
+
int vec_row,
|
| 267 |
+
int height,
|
| 268 |
+
int width
|
| 269 |
+
);
|
| 270 |
+
|
| 271 |
+
const int BLOCKWIDTH = 128;
|
| 272 |
+
const int BLOCKHEIGHT8 = 32;
|
| 273 |
+
const int BLOCKHEIGHT4 = 16;
|
| 274 |
+
const int BLOCKHEIGHT_OLD4 = 128;
|
| 275 |
+
//const int BLOCKHEIGHT_OLD8 = 128;
|
| 276 |
+
|
| 277 |
+
__device__ inline unsigned int as_unsigned(int i) {
|
| 278 |
+
return *reinterpret_cast<unsigned int*>(&i);
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
__device__ inline int as_int(int i) {
|
| 282 |
+
return *reinterpret_cast<int*>(&i);
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
void vecquant8matmul_batched_column_compression_cuda(
|
| 286 |
+
torch::Tensor vec,
|
| 287 |
+
torch::Tensor mat,
|
| 288 |
+
torch::Tensor mul,
|
| 289 |
+
torch::Tensor scales,
|
| 290 |
+
torch::Tensor zeros
|
| 291 |
+
) {
|
| 292 |
+
int batch = vec.size(0);
|
| 293 |
+
int heads = vec.size(1);
|
| 294 |
+
int vec_row = vec.size(2);
|
| 295 |
+
int height = vec.size(3);
|
| 296 |
+
int width = mat.size(3) * 4;
|
| 297 |
+
|
| 298 |
+
dim3 blocks(
|
| 299 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 300 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 301 |
+
);
|
| 302 |
+
dim3 threads(BLOCKWIDTH);
|
| 303 |
+
|
| 304 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 305 |
+
vec.type(), "vecquant8matmul_batched_cuda", ([&] {
|
| 306 |
+
VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
|
| 307 |
+
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
|
| 308 |
+
scales.data<scalar_t>(), zeros.data<int>(),
|
| 309 |
+
batch, heads, vec_row, height, width
|
| 310 |
+
);
|
| 311 |
+
})
|
| 312 |
+
);
|
| 313 |
+
|
| 314 |
+
}
|
| 315 |
+
|
| 316 |
+
template <typename scalar_t>
|
| 317 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel(
|
| 318 |
+
const scalar_t* __restrict__ vec,
|
| 319 |
+
const int* __restrict__ mat,
|
| 320 |
+
scalar_t* __restrict__ mul,
|
| 321 |
+
const scalar_t* __restrict__ scales,
|
| 322 |
+
const int* __restrict__ zeros,
|
| 323 |
+
int batch,
|
| 324 |
+
int heads,
|
| 325 |
+
int vec_row,
|
| 326 |
+
int height,
|
| 327 |
+
int width
|
| 328 |
+
) {
|
| 329 |
+
int weight_total = batch * heads * height * width / 4;
|
| 330 |
+
int input_total = batch * heads * vec_row * height;
|
| 331 |
+
int out_total = batch * heads * vec_row * width;
|
| 332 |
+
int tid = threadIdx.x;
|
| 333 |
+
// h is index of height with step being BLOCKWIDTH
|
| 334 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 335 |
+
// w is index of width with step being 1
|
| 336 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 337 |
+
if (w >= width && tid >= height) {
|
| 338 |
+
return;
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 342 |
+
int k;
|
| 343 |
+
scalar_t w_tmp;
|
| 344 |
+
|
| 345 |
+
float weight[BLOCKWIDTH];
|
| 346 |
+
|
| 347 |
+
for (int b = 0; b < batch; ++b){
|
| 348 |
+
for (int head = 0; head < heads; ++head){
|
| 349 |
+
int batch_shift = b * heads + head;
|
| 350 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 351 |
+
int i_w = (w / 4);
|
| 352 |
+
int w_bit = (w % 4) * 8;
|
| 353 |
+
|
| 354 |
+
int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
|
| 355 |
+
if (w_index >= weight_total || w >= width) {
|
| 356 |
+
weight[k] = 0;
|
| 357 |
+
} else {
|
| 358 |
+
scalar_t scale = scales[batch_shift * height + h + k];
|
| 359 |
+
scalar_t zero = zeros[batch_shift * height + h + k];
|
| 360 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
|
| 361 |
+
weight[k] = scale * (w_tmp - zero);
|
| 362 |
+
}
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
scalar_t res;
|
| 366 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 367 |
+
res = 0;
|
| 368 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 369 |
+
if (vec_index < input_total) {
|
| 370 |
+
blockvec[tid] = vec[vec_index];
|
| 371 |
+
} else {
|
| 372 |
+
blockvec[tid] = 0;
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
__syncthreads();
|
| 376 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 377 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 378 |
+
res += weight[k] * blockvec[k];
|
| 379 |
+
}
|
| 380 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 381 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 382 |
+
if (out_index < out_total) {
|
| 383 |
+
atomicAdd(&mul[out_index], res);
|
| 384 |
+
}
|
| 385 |
+
__syncthreads();
|
| 386 |
+
}
|
| 387 |
+
}
|
| 388 |
+
}
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
void vecquant8matmul_batched_cuda(
|
| 392 |
+
torch::Tensor vec,
|
| 393 |
+
torch::Tensor mat,
|
| 394 |
+
torch::Tensor mul,
|
| 395 |
+
torch::Tensor scales,
|
| 396 |
+
torch::Tensor zeros
|
| 397 |
+
) {
|
| 398 |
+
int batch = vec.size(0);
|
| 399 |
+
int heads = vec.size(1);
|
| 400 |
+
int vec_row = vec.size(2);
|
| 401 |
+
int vec_height = vec.size(3);
|
| 402 |
+
int height = mat.size(2);
|
| 403 |
+
int width = mat.size(3);
|
| 404 |
+
int zero_width = zeros.size(2);
|
| 405 |
+
|
| 406 |
+
dim3 blocks(
|
| 407 |
+
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
|
| 408 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 409 |
+
);
|
| 410 |
+
dim3 threads(BLOCKWIDTH);
|
| 411 |
+
|
| 412 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 413 |
+
vec.type(), "vecquant8matmul_batched_cuda", ([&] {
|
| 414 |
+
VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
|
| 415 |
+
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
|
| 416 |
+
scales.data<scalar_t>(), zeros.data<int>(),
|
| 417 |
+
batch, heads, vec_row, vec_height, height, width, zero_width
|
| 418 |
+
);
|
| 419 |
+
})
|
| 420 |
+
);
|
| 421 |
+
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
template <typename scalar_t>
|
| 425 |
+
__global__ void VecQuant8BatchMatMulKernel(
|
| 426 |
+
const scalar_t* __restrict__ vec,
|
| 427 |
+
const int* __restrict__ mat,
|
| 428 |
+
scalar_t* __restrict__ mul,
|
| 429 |
+
const scalar_t* __restrict__ scales,
|
| 430 |
+
const int* __restrict__ zeros,
|
| 431 |
+
int batch,
|
| 432 |
+
int heads,
|
| 433 |
+
int vec_row,
|
| 434 |
+
int vec_height,
|
| 435 |
+
int height,
|
| 436 |
+
int width,
|
| 437 |
+
int zero_width
|
| 438 |
+
) {
|
| 439 |
+
int weight_total = batch * heads * height * width;
|
| 440 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 441 |
+
int out_total = batch * heads * vec_row * width;
|
| 442 |
+
int tid = threadIdx.x;
|
| 443 |
+
// h is index of height with step being BLOCKHEIGHT8
|
| 444 |
+
int h = BLOCKHEIGHT8 * blockIdx.x;
|
| 445 |
+
// w is index of width with step being 1
|
| 446 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 447 |
+
if (w >= width && tid >= vec_height) {
|
| 448 |
+
return;
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 452 |
+
// i is index of mat of block first row
|
| 453 |
+
int i = width * h + w;
|
| 454 |
+
// if (i >= width * height) {
|
| 455 |
+
// return;
|
| 456 |
+
// }
|
| 457 |
+
int k;
|
| 458 |
+
scalar_t w_tmp;
|
| 459 |
+
|
| 460 |
+
int z_w = w / 4;
|
| 461 |
+
int z_mod = (w % 4) * 8;
|
| 462 |
+
|
| 463 |
+
float weight[BLOCKWIDTH];
|
| 464 |
+
|
| 465 |
+
for (int b = 0; b < batch; ++b){
|
| 466 |
+
for (int head = 0; head < heads; ++head){
|
| 467 |
+
int batch_shift = b * heads + head;
|
| 468 |
+
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
|
| 469 |
+
int k_w = (k / 4);
|
| 470 |
+
int k_bit = (k % 4) * 8;
|
| 471 |
+
|
| 472 |
+
int w_index = batch_shift * height * width + i + (k_w * width);
|
| 473 |
+
if (w_index >= weight_total || w >= width) {
|
| 474 |
+
weight[k] = 0;
|
| 475 |
+
} else {
|
| 476 |
+
scalar_t scale = scales[batch_shift * width + w];
|
| 477 |
+
scalar_t zero;
|
| 478 |
+
if (zero_width == width) {
|
| 479 |
+
zero = zeros[batch_shift * width + w];
|
| 480 |
+
} else {
|
| 481 |
+
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
|
| 482 |
+
}
|
| 483 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
|
| 484 |
+
weight[k] = scale * (w_tmp - zero);
|
| 485 |
+
}
|
| 486 |
+
}
|
| 487 |
+
|
| 488 |
+
scalar_t res;
|
| 489 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 490 |
+
res = 0;
|
| 491 |
+
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
|
| 492 |
+
if (vec_index < input_total) {
|
| 493 |
+
blockvec[tid] = vec[vec_index];
|
| 494 |
+
} else {
|
| 495 |
+
blockvec[tid] = 0;
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
__syncthreads();
|
| 499 |
+
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
|
| 500 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 501 |
+
res += weight[k] * blockvec[k];
|
| 502 |
+
}
|
| 503 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 504 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 505 |
+
if (out_index < out_total) {
|
| 506 |
+
atomicAdd(&mul[out_index], res);
|
| 507 |
+
}
|
| 508 |
+
__syncthreads();
|
| 509 |
+
}
|
| 510 |
+
}
|
| 511 |
+
}
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
void vecquant8matmul_cuda(
|
| 516 |
+
torch::Tensor vec,
|
| 517 |
+
torch::Tensor mat,
|
| 518 |
+
torch::Tensor mul,
|
| 519 |
+
torch::Tensor scales,
|
| 520 |
+
torch::Tensor zeros,
|
| 521 |
+
torch::Tensor g_idx
|
| 522 |
+
) {
|
| 523 |
+
int batch = vec.size(0);
|
| 524 |
+
int vec_height = vec.size(1);
|
| 525 |
+
int height = mat.size(0);
|
| 526 |
+
int width = mat.size(1);
|
| 527 |
+
int zero_width = zeros.size(1);
|
| 528 |
+
|
| 529 |
+
dim3 blocks(
|
| 530 |
+
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
|
| 531 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 532 |
+
);
|
| 533 |
+
dim3 threads(BLOCKWIDTH);
|
| 534 |
+
|
| 535 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 536 |
+
vec.type(), "vecquant8matmul_cuda", ([&] {
|
| 537 |
+
VecQuant8MatMulKernel<<<blocks, threads>>>(
|
| 538 |
+
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
|
| 539 |
+
scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
|
| 540 |
+
batch, vec_height, height, width, zero_width
|
| 541 |
+
);
|
| 542 |
+
})
|
| 543 |
+
);
|
| 544 |
+
}
|
| 545 |
+
|
| 546 |
+
template <typename scalar_t>
|
| 547 |
+
__global__ void VecQuant8MatMulKernel(
|
| 548 |
+
const scalar_t* __restrict__ vec,
|
| 549 |
+
const int* __restrict__ mat,
|
| 550 |
+
scalar_t* __restrict__ mul,
|
| 551 |
+
const scalar_t* __restrict__ scales,
|
| 552 |
+
const int* __restrict__ zeros,
|
| 553 |
+
const int* __restrict__ g_idx,
|
| 554 |
+
int batch,
|
| 555 |
+
int vec_height,
|
| 556 |
+
int height,
|
| 557 |
+
int width,
|
| 558 |
+
int zero_width
|
| 559 |
+
) {
|
| 560 |
+
int h = BLOCKHEIGHT8 * blockIdx.x;
|
| 561 |
+
int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
|
| 562 |
+
|
| 563 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 564 |
+
int i = width * h + w;
|
| 565 |
+
int g_h = h * 4;
|
| 566 |
+
int k;
|
| 567 |
+
unsigned int g;
|
| 568 |
+
scalar_t w_tmp;
|
| 569 |
+
|
| 570 |
+
int z_w = w / 4;
|
| 571 |
+
int z_mod = (w % 4) * 8;
|
| 572 |
+
|
| 573 |
+
float weight[BLOCKWIDTH];
|
| 574 |
+
|
| 575 |
+
for (k = 0; k < BLOCKWIDTH; ++k){
|
| 576 |
+
int k_w = (k / 4);
|
| 577 |
+
int k_bit = (k % 4) * 8;
|
| 578 |
+
|
| 579 |
+
g = as_int(g_idx[g_h + k]);
|
| 580 |
+
scalar_t scale = scales[g * width + w];
|
| 581 |
+
scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
|
| 582 |
+
|
| 583 |
+
w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
|
| 584 |
+
|
| 585 |
+
weight[k] = scale * (w_tmp - zero);
|
| 586 |
+
}
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
scalar_t res;
|
| 590 |
+
for (int b = 0; b < batch; ++b){
|
| 591 |
+
res = 0;
|
| 592 |
+
blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
|
| 593 |
+
__syncthreads();
|
| 594 |
+
for (k = 0; k < BLOCKWIDTH; ++k){
|
| 595 |
+
res += weight[k] * blockvec[k];
|
| 596 |
+
}
|
| 597 |
+
atomicAdd(&mul[b * width + w], res);
|
| 598 |
+
__syncthreads();
|
| 599 |
+
}
|
| 600 |
+
}
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
void vecquant4matmul_batched_cuda(
|
| 605 |
+
torch::Tensor vec,
|
| 606 |
+
torch::Tensor mat,
|
| 607 |
+
torch::Tensor mul,
|
| 608 |
+
torch::Tensor scales,
|
| 609 |
+
torch::Tensor zeros
|
| 610 |
+
) {
|
| 611 |
+
int batch = vec.size(0);
|
| 612 |
+
int heads = vec.size(1);
|
| 613 |
+
int vec_row = vec.size(2);
|
| 614 |
+
int vec_height = vec.size(3);
|
| 615 |
+
int height = mat.size(2);
|
| 616 |
+
int width = mat.size(3);
|
| 617 |
+
int zero_width = zeros.size(2);
|
| 618 |
+
|
| 619 |
+
dim3 blocks(
|
| 620 |
+
(height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
|
| 621 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 622 |
+
);
|
| 623 |
+
dim3 threads(BLOCKWIDTH);
|
| 624 |
+
|
| 625 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 626 |
+
vec.type(), "vecquant4matmul_batched_cuda", ([&] {
|
| 627 |
+
VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
|
| 628 |
+
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
|
| 629 |
+
scales.data<scalar_t>(), zeros.data<int>(),
|
| 630 |
+
batch, heads, vec_row, vec_height, height, width, zero_width
|
| 631 |
+
);
|
| 632 |
+
})
|
| 633 |
+
);
|
| 634 |
+
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
template <typename scalar_t>
|
| 638 |
+
__global__ void VecQuant4BatchMatMulKernel(
|
| 639 |
+
const scalar_t* __restrict__ vec,
|
| 640 |
+
const int* __restrict__ mat,
|
| 641 |
+
scalar_t* __restrict__ mul,
|
| 642 |
+
const scalar_t* __restrict__ scales,
|
| 643 |
+
const int* __restrict__ zeros,
|
| 644 |
+
int batch,
|
| 645 |
+
int heads,
|
| 646 |
+
int vec_row,
|
| 647 |
+
int vec_height,
|
| 648 |
+
int height,
|
| 649 |
+
int width,
|
| 650 |
+
int zero_width
|
| 651 |
+
) {
|
| 652 |
+
int weight_total = batch * heads * height * width;
|
| 653 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 654 |
+
int out_total = batch * heads * vec_row * width;
|
| 655 |
+
int tid = threadIdx.x;
|
| 656 |
+
// h is index of height with step being BLOCKHEIGHT4
|
| 657 |
+
int h = BLOCKHEIGHT4 * blockIdx.x;
|
| 658 |
+
// w is index of width with step being 1
|
| 659 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 660 |
+
if (w >= width && tid >= vec_height) {
|
| 661 |
+
return;
|
| 662 |
+
}
|
| 663 |
+
|
| 664 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 665 |
+
// i is index of mat of block first row
|
| 666 |
+
int i = width * h + w;
|
| 667 |
+
int k;
|
| 668 |
+
scalar_t w_tmp;
|
| 669 |
+
|
| 670 |
+
int z_w = w / 8;
|
| 671 |
+
int z_mod = (w % 8) * 4;
|
| 672 |
+
|
| 673 |
+
float weight[BLOCKWIDTH];
|
| 674 |
+
|
| 675 |
+
for (int b = 0; b < batch; ++b){
|
| 676 |
+
for (int head = 0; head < heads; ++head){
|
| 677 |
+
int batch_shift = b * heads + head;
|
| 678 |
+
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
|
| 679 |
+
int k_w = (k / 8);
|
| 680 |
+
int k_bit = (k % 8) * 4;
|
| 681 |
+
|
| 682 |
+
int w_index = batch_shift * height * width + i + (k_w * width);
|
| 683 |
+
if (w_index >= weight_total || w >= width) {
|
| 684 |
+
weight[k] = 0;
|
| 685 |
+
} else {
|
| 686 |
+
scalar_t scale = scales[batch_shift * width + w];
|
| 687 |
+
scalar_t zero;
|
| 688 |
+
if (zero_width == width) {
|
| 689 |
+
zero = zeros[batch_shift * width + w];
|
| 690 |
+
} else {
|
| 691 |
+
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
|
| 692 |
+
}
|
| 693 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
|
| 694 |
+
weight[k] = scale * (w_tmp - zero);
|
| 695 |
+
}
|
| 696 |
+
}
|
| 697 |
+
|
| 698 |
+
scalar_t res;
|
| 699 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 700 |
+
res = 0;
|
| 701 |
+
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
|
| 702 |
+
if (vec_index < input_total) {
|
| 703 |
+
blockvec[tid] = vec[vec_index];
|
| 704 |
+
} else {
|
| 705 |
+
blockvec[tid] = 0;
|
| 706 |
+
}
|
| 707 |
+
|
| 708 |
+
__syncthreads();
|
| 709 |
+
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
|
| 710 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 711 |
+
res += weight[k] * blockvec[k];
|
| 712 |
+
}
|
| 713 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 714 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 715 |
+
if (out_index < out_total) {
|
| 716 |
+
atomicAdd(&mul[out_index], res);
|
| 717 |
+
}
|
| 718 |
+
__syncthreads();
|
| 719 |
+
}
|
| 720 |
+
}
|
| 721 |
+
}
|
| 722 |
+
}
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
void vecquant4matmul_batched_column_compression_cuda(
|
| 727 |
+
torch::Tensor vec,
|
| 728 |
+
torch::Tensor mat,
|
| 729 |
+
torch::Tensor mul,
|
| 730 |
+
torch::Tensor scales,
|
| 731 |
+
torch::Tensor zeros
|
| 732 |
+
) {
|
| 733 |
+
int batch = vec.size(0);
|
| 734 |
+
int heads = vec.size(1);
|
| 735 |
+
int vec_row = vec.size(2);
|
| 736 |
+
int height = vec.size(3);
|
| 737 |
+
int width = mat.size(3) * 8;
|
| 738 |
+
|
| 739 |
+
dim3 blocks(
|
| 740 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 741 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 742 |
+
);
|
| 743 |
+
dim3 threads(BLOCKWIDTH);
|
| 744 |
+
|
| 745 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 746 |
+
vec.type(), "vecquant4matmul_batched_cuda", ([&] {
|
| 747 |
+
VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
|
| 748 |
+
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
|
| 749 |
+
scales.data<scalar_t>(), zeros.data<int>(),
|
| 750 |
+
batch, heads, vec_row, height, width
|
| 751 |
+
);
|
| 752 |
+
})
|
| 753 |
+
);
|
| 754 |
+
|
| 755 |
+
}
|
| 756 |
+
|
| 757 |
+
template <typename scalar_t>
|
| 758 |
+
__global__ void VecQuant4BatchMatMulColumnCompressionKernel(
|
| 759 |
+
const scalar_t* __restrict__ vec,
|
| 760 |
+
const int* __restrict__ mat,
|
| 761 |
+
scalar_t* __restrict__ mul,
|
| 762 |
+
const scalar_t* __restrict__ scales,
|
| 763 |
+
const int* __restrict__ zeros,
|
| 764 |
+
int batch,
|
| 765 |
+
int heads,
|
| 766 |
+
int vec_row,
|
| 767 |
+
int height,
|
| 768 |
+
int width
|
| 769 |
+
) {
|
| 770 |
+
int weight_total = batch * heads * height * width / 8;
|
| 771 |
+
int input_total = batch * heads * vec_row * height;
|
| 772 |
+
int out_total = batch * heads * vec_row * width;
|
| 773 |
+
int tid = threadIdx.x;
|
| 774 |
+
// h is index of height with step being BLOCKWIDTH
|
| 775 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 776 |
+
// w is index of width with step being 1
|
| 777 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 778 |
+
if (w >= width && tid >= height) {
|
| 779 |
+
return;
|
| 780 |
+
}
|
| 781 |
+
|
| 782 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 783 |
+
int k;
|
| 784 |
+
scalar_t w_tmp;
|
| 785 |
+
|
| 786 |
+
float weight[BLOCKWIDTH];
|
| 787 |
+
|
| 788 |
+
for (int b = 0; b < batch; ++b){
|
| 789 |
+
for (int head = 0; head < heads; ++head){
|
| 790 |
+
int batch_shift = b * heads + head;
|
| 791 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 792 |
+
int i_w = (w / 8);
|
| 793 |
+
int w_bit = (w % 8) * 4;
|
| 794 |
+
|
| 795 |
+
int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
|
| 796 |
+
if (w_index >= weight_total || w >= width) {
|
| 797 |
+
weight[k] = 0;
|
| 798 |
+
} else {
|
| 799 |
+
scalar_t scale = scales[batch_shift * height + h + k];
|
| 800 |
+
scalar_t zero = zeros[batch_shift * height + h + k];
|
| 801 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
|
| 802 |
+
weight[k] = scale * (w_tmp - zero);
|
| 803 |
+
}
|
| 804 |
+
}
|
| 805 |
+
|
| 806 |
+
scalar_t res;
|
| 807 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 808 |
+
res = 0;
|
| 809 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 810 |
+
if (vec_index < input_total) {
|
| 811 |
+
blockvec[tid] = vec[vec_index];
|
| 812 |
+
} else {
|
| 813 |
+
blockvec[tid] = 0;
|
| 814 |
+
}
|
| 815 |
+
|
| 816 |
+
__syncthreads();
|
| 817 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 818 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 819 |
+
res += weight[k] * blockvec[k];
|
| 820 |
+
}
|
| 821 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 822 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 823 |
+
if (out_index < out_total) {
|
| 824 |
+
atomicAdd(&mul[out_index], res);
|
| 825 |
+
}
|
| 826 |
+
__syncthreads();
|
| 827 |
+
}
|
| 828 |
+
}
|
| 829 |
+
}
|
| 830 |
+
}
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
void vecquant8matmul_batched_old_cuda(
|
| 834 |
+
torch::Tensor vec,
|
| 835 |
+
torch::Tensor mat,
|
| 836 |
+
torch::Tensor mul,
|
| 837 |
+
torch::Tensor scales,
|
| 838 |
+
torch::Tensor zeros
|
| 839 |
+
) {
|
| 840 |
+
int batch = vec.size(0);
|
| 841 |
+
int heads = vec.size(1);
|
| 842 |
+
int vec_row = vec.size(2);
|
| 843 |
+
int vec_height = vec.size(3);
|
| 844 |
+
int height = mat.size(2);
|
| 845 |
+
int width = mat.size(3);
|
| 846 |
+
int zero_width = zeros.size(2);
|
| 847 |
+
|
| 848 |
+
dim3 blocks(
|
| 849 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 850 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 851 |
+
);
|
| 852 |
+
dim3 threads(BLOCKWIDTH);
|
| 853 |
+
|
| 854 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 855 |
+
vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
|
| 856 |
+
VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
|
| 857 |
+
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
|
| 858 |
+
scales.data<scalar_t>(), zeros.data<scalar_t>(),
|
| 859 |
+
batch, heads, vec_row, vec_height, height, width, zero_width
|
| 860 |
+
);
|
| 861 |
+
})
|
| 862 |
+
);
|
| 863 |
+
}
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
template <typename scalar_t>
|
| 867 |
+
__global__ void VecQuant8BatchMatMulKernel_old(
|
| 868 |
+
const scalar_t* __restrict__ vec,
|
| 869 |
+
const uint8_t* __restrict__ mat,
|
| 870 |
+
scalar_t* __restrict__ mul,
|
| 871 |
+
const scalar_t* __restrict__ scales,
|
| 872 |
+
const scalar_t* __restrict__ zeros,
|
| 873 |
+
int batch,
|
| 874 |
+
int heads,
|
| 875 |
+
int vec_row,
|
| 876 |
+
int vec_height,
|
| 877 |
+
int height,
|
| 878 |
+
int width,
|
| 879 |
+
int zero_width
|
| 880 |
+
) {
|
| 881 |
+
int weight_total = batch * heads * height * width;
|
| 882 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 883 |
+
int out_total = batch * heads * vec_row * width;
|
| 884 |
+
int tid = threadIdx.x;
|
| 885 |
+
// h is index of height with step being BLOCKHEIGHT8
|
| 886 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 887 |
+
// w is index of width with step being 1
|
| 888 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 889 |
+
if (w >= width && tid >= vec_height) {
|
| 890 |
+
return;
|
| 891 |
+
}
|
| 892 |
+
|
| 893 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 894 |
+
// i is index of mat of block first row
|
| 895 |
+
int i = width * h + w;
|
| 896 |
+
int k;
|
| 897 |
+
scalar_t w_tmp;
|
| 898 |
+
|
| 899 |
+
float weight[BLOCKWIDTH];
|
| 900 |
+
for (int b = 0; b < batch; ++b){
|
| 901 |
+
for (int head = 0; head < heads; ++head){
|
| 902 |
+
int batch_shift = b * heads + head;
|
| 903 |
+
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
|
| 904 |
+
int k_w = k;
|
| 905 |
+
int w_index = batch_shift * height * width + i + (k_w * width);
|
| 906 |
+
if (w_index >= weight_total || w >= width) {
|
| 907 |
+
weight[k] = 0;
|
| 908 |
+
} else {
|
| 909 |
+
scalar_t scale = scales[batch_shift * width + w];
|
| 910 |
+
scalar_t zero = zeros[batch_shift * width + w];
|
| 911 |
+
w_tmp = as_unsigned(mat[w_index]);
|
| 912 |
+
weight[k] = scale * (w_tmp - zero);
|
| 913 |
+
}
|
| 914 |
+
}
|
| 915 |
+
|
| 916 |
+
scalar_t res;
|
| 917 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 918 |
+
res = 0;
|
| 919 |
+
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
|
| 920 |
+
if (vec_index < input_total) {
|
| 921 |
+
blockvec[tid] = vec[vec_index];
|
| 922 |
+
} else {
|
| 923 |
+
blockvec[tid] = 0;
|
| 924 |
+
}
|
| 925 |
+
|
| 926 |
+
__syncthreads();
|
| 927 |
+
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
|
| 928 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 929 |
+
res += weight[k] * blockvec[k];
|
| 930 |
+
}
|
| 931 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 932 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 933 |
+
if (out_index < out_total) {
|
| 934 |
+
atomicAdd(&mul[out_index], res);
|
| 935 |
+
}
|
| 936 |
+
__syncthreads();
|
| 937 |
+
}
|
| 938 |
+
}
|
| 939 |
+
}
|
| 940 |
+
}
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
void vecquant8matmul_batched_faster_cuda(
|
| 945 |
+
torch::Tensor vec,
|
| 946 |
+
torch::Tensor mat,
|
| 947 |
+
torch::Tensor mul,
|
| 948 |
+
torch::Tensor scales,
|
| 949 |
+
torch::Tensor zeros
|
| 950 |
+
) {
|
| 951 |
+
int batch = vec.size(0);
|
| 952 |
+
int heads = vec.size(1);
|
| 953 |
+
int vec_row = vec.size(2);
|
| 954 |
+
int vec_height = vec.size(3);
|
| 955 |
+
int height = mat.size(2);
|
| 956 |
+
int width = mat.size(3);
|
| 957 |
+
int zero_width = zeros.size(2);
|
| 958 |
+
|
| 959 |
+
dim3 blocks(
|
| 960 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 961 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 962 |
+
);
|
| 963 |
+
dim3 threads(BLOCKWIDTH);
|
| 964 |
+
|
| 965 |
+
VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
|
| 966 |
+
(half*) vec.data_ptr(),
|
| 967 |
+
(uint8_t*) mat.data_ptr(),
|
| 968 |
+
(half*) mul.data_ptr(),
|
| 969 |
+
(half*) scales.data_ptr(),
|
| 970 |
+
(half*) zeros.data_ptr(),
|
| 971 |
+
batch, heads, vec_row, vec_height, height, width, zero_width
|
| 972 |
+
);
|
| 973 |
+
}
|
| 974 |
+
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
__global__ void VecQuant8BatchMatMulKernel_faster(
|
| 978 |
+
const half* __restrict__ vec,
|
| 979 |
+
const uint8_t* __restrict__ mat,
|
| 980 |
+
half* __restrict__ mul,
|
| 981 |
+
const half* __restrict__ scales,
|
| 982 |
+
const half* __restrict__ zeros,
|
| 983 |
+
int batch,
|
| 984 |
+
int heads,
|
| 985 |
+
int vec_row,
|
| 986 |
+
int vec_height,
|
| 987 |
+
int height,
|
| 988 |
+
int width,
|
| 989 |
+
int zero_width
|
| 990 |
+
) {
|
| 991 |
+
//int weight_total = batch * heads * height * width;
|
| 992 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 993 |
+
int out_total = batch * heads * vec_row * width;
|
| 994 |
+
int tid = threadIdx.x;
|
| 995 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 996 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 997 |
+
if (w >= width && tid >= height) {
|
| 998 |
+
return;
|
| 999 |
+
}
|
| 1000 |
+
|
| 1001 |
+
__shared__ float blockvec[BLOCKWIDTH];
|
| 1002 |
+
int i = width * h + w;
|
| 1003 |
+
int k;
|
| 1004 |
+
float w_tmp;
|
| 1005 |
+
|
| 1006 |
+
float weight[BLOCKWIDTH];
|
| 1007 |
+
for (int b = 0; b < batch; ++b){
|
| 1008 |
+
for (int head = 0; head < heads; ++head){
|
| 1009 |
+
int batch_shift = b * heads + head;
|
| 1010 |
+
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
|
| 1011 |
+
int k_w = k;
|
| 1012 |
+
int w_index = batch_shift * height * width + i + (k_w * width);
|
| 1013 |
+
float scale = __half2float(scales[batch_shift * width + w]);
|
| 1014 |
+
float zero = __half2float(zeros[batch_shift * width + w]);
|
| 1015 |
+
w_tmp = as_unsigned(mat[w_index]);
|
| 1016 |
+
weight[k] = scale *(w_tmp-zero);
|
| 1017 |
+
}
|
| 1018 |
+
|
| 1019 |
+
float res;
|
| 1020 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1021 |
+
res = 0;
|
| 1022 |
+
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1023 |
+
if (vec_index < input_total) {
|
| 1024 |
+
blockvec[tid] = __half2float(vec[vec_index]);
|
| 1025 |
+
} else {
|
| 1026 |
+
blockvec[tid] = 0;
|
| 1027 |
+
}
|
| 1028 |
+
__syncthreads();
|
| 1029 |
+
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
|
| 1030 |
+
float temp_res = weight[k]*blockvec[k];
|
| 1031 |
+
res += temp_res;
|
| 1032 |
+
}
|
| 1033 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1034 |
+
if (out_index < out_total) {
|
| 1035 |
+
atomicAdd(&mul[out_index], __float2half(res));
|
| 1036 |
+
}
|
| 1037 |
+
__syncthreads();
|
| 1038 |
+
}
|
| 1039 |
+
}
|
| 1040 |
+
}
|
| 1041 |
+
}
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
|
| 1046 |
+
void vecquant8matmul_batched_column_compression_faster_cuda(
|
| 1047 |
+
torch::Tensor vec,
|
| 1048 |
+
torch::Tensor mat,
|
| 1049 |
+
torch::Tensor mul,
|
| 1050 |
+
torch::Tensor scales,
|
| 1051 |
+
torch::Tensor zeros
|
| 1052 |
+
) {
|
| 1053 |
+
int batch = vec.size(0);
|
| 1054 |
+
int heads = vec.size(1);
|
| 1055 |
+
int vec_row = vec.size(2);
|
| 1056 |
+
int height = vec.size(3);
|
| 1057 |
+
int width = mat.size(3);
|
| 1058 |
+
|
| 1059 |
+
dim3 blocks(
|
| 1060 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 1061 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1062 |
+
);
|
| 1063 |
+
dim3 threads(BLOCKWIDTH);
|
| 1064 |
+
|
| 1065 |
+
VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
|
| 1066 |
+
(half*) vec.data_ptr(),
|
| 1067 |
+
(uint8_t*) mat.data_ptr(),
|
| 1068 |
+
(half*) mul.data_ptr(),
|
| 1069 |
+
(half*) scales.data_ptr(),
|
| 1070 |
+
(half*) zeros.data_ptr(),
|
| 1071 |
+
batch, heads, vec_row, height, width
|
| 1072 |
+
);
|
| 1073 |
+
|
| 1074 |
+
}
|
| 1075 |
+
|
| 1076 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
|
| 1077 |
+
const half* __restrict__ vec,
|
| 1078 |
+
const uint8_t* __restrict__ mat,
|
| 1079 |
+
half* __restrict__ mul,
|
| 1080 |
+
const half* __restrict__ scales,
|
| 1081 |
+
const half* __restrict__ zeros,
|
| 1082 |
+
int batch,
|
| 1083 |
+
int heads,
|
| 1084 |
+
int vec_row,
|
| 1085 |
+
int height,
|
| 1086 |
+
int width
|
| 1087 |
+
) {
|
| 1088 |
+
//int weight_total = batch * heads * height * width;
|
| 1089 |
+
int input_total = batch * heads * vec_row * height;
|
| 1090 |
+
int out_total = batch * heads * vec_row * width;
|
| 1091 |
+
int tid = threadIdx.x;
|
| 1092 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 1093 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 1094 |
+
if (w >= width && tid >= height) {
|
| 1095 |
+
return;
|
| 1096 |
+
}
|
| 1097 |
+
|
| 1098 |
+
__shared__ float blockvec[BLOCKWIDTH];
|
| 1099 |
+
int k;
|
| 1100 |
+
float w_tmp;
|
| 1101 |
+
float weight[BLOCKWIDTH];
|
| 1102 |
+
|
| 1103 |
+
for (int b = 0; b < batch; ++b){
|
| 1104 |
+
for (int head = 0; head < heads; ++head){
|
| 1105 |
+
int batch_shift = b * heads + head;
|
| 1106 |
+
for (k = 0; k < BLOCKWIDTH; ++k){
|
| 1107 |
+
int w_index = (batch_shift * height + h + k) * width + w;
|
| 1108 |
+
float scale = __half2float(scales[batch_shift * height + h + k]);
|
| 1109 |
+
float zero = __half2float(zeros[batch_shift * height + h + k]);
|
| 1110 |
+
w_tmp = mat[w_index];
|
| 1111 |
+
weight[k] = scale * (w_tmp-zero);
|
| 1112 |
+
}
|
| 1113 |
+
|
| 1114 |
+
float res;
|
| 1115 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1116 |
+
res = 0;
|
| 1117 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1118 |
+
if (vec_index < input_total) {
|
| 1119 |
+
blockvec[tid] = __half2float(vec[vec_index]);
|
| 1120 |
+
} else {
|
| 1121 |
+
blockvec[tid] = 0;
|
| 1122 |
+
}
|
| 1123 |
+
__syncthreads();
|
| 1124 |
+
for (k = 0; k < BLOCKWIDTH; ++k){
|
| 1125 |
+
res += weight[k]*blockvec[k];
|
| 1126 |
+
}
|
| 1127 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1128 |
+
if (out_index < out_total) {
|
| 1129 |
+
atomicAdd(&mul[out_index], __float2half(res));
|
| 1130 |
+
}
|
| 1131 |
+
__syncthreads();
|
| 1132 |
+
}
|
| 1133 |
+
}
|
| 1134 |
+
}
|
| 1135 |
+
}
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
|
| 1139 |
+
void vecquant8matmul_batched_column_compression_old_cuda(
|
| 1140 |
+
torch::Tensor vec,
|
| 1141 |
+
torch::Tensor mat,
|
| 1142 |
+
torch::Tensor mul,
|
| 1143 |
+
torch::Tensor scales,
|
| 1144 |
+
torch::Tensor zeros
|
| 1145 |
+
) {
|
| 1146 |
+
int batch = vec.size(0);
|
| 1147 |
+
int heads = vec.size(1);
|
| 1148 |
+
int vec_row = vec.size(2);
|
| 1149 |
+
int height = vec.size(3);
|
| 1150 |
+
int width = mat.size(3);
|
| 1151 |
+
|
| 1152 |
+
dim3 blocks(
|
| 1153 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 1154 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1155 |
+
);
|
| 1156 |
+
dim3 threads(BLOCKWIDTH);
|
| 1157 |
+
|
| 1158 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 1159 |
+
vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
|
| 1160 |
+
VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
|
| 1161 |
+
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
|
| 1162 |
+
scales.data<scalar_t>(), zeros.data<scalar_t>(),
|
| 1163 |
+
batch, heads, vec_row, height, width
|
| 1164 |
+
);
|
| 1165 |
+
})
|
| 1166 |
+
);
|
| 1167 |
+
|
| 1168 |
+
}
|
| 1169 |
+
|
| 1170 |
+
template <typename scalar_t>
|
| 1171 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
|
| 1172 |
+
const scalar_t* __restrict__ vec,
|
| 1173 |
+
const uint8_t* __restrict__ mat,
|
| 1174 |
+
scalar_t* __restrict__ mul,
|
| 1175 |
+
const scalar_t* __restrict__ scales,
|
| 1176 |
+
const scalar_t* __restrict__ zeros,
|
| 1177 |
+
int batch,
|
| 1178 |
+
int heads,
|
| 1179 |
+
int vec_row,
|
| 1180 |
+
int height,
|
| 1181 |
+
int width
|
| 1182 |
+
) {
|
| 1183 |
+
int weight_total = batch * heads * height * width;
|
| 1184 |
+
int input_total = batch * heads * vec_row * height;
|
| 1185 |
+
int out_total = batch * heads * vec_row * width;
|
| 1186 |
+
int tid = threadIdx.x;
|
| 1187 |
+
// h is index of height with step being BLOCKWIDTH
|
| 1188 |
+
int h = BLOCKWIDTH * blockIdx.x;
|
| 1189 |
+
// w is index of width with step being 1
|
| 1190 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 1191 |
+
if (w >= width && tid >= height) {
|
| 1192 |
+
return;
|
| 1193 |
+
}
|
| 1194 |
+
|
| 1195 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 1196 |
+
int k;
|
| 1197 |
+
scalar_t w_tmp;
|
| 1198 |
+
|
| 1199 |
+
float weight[BLOCKWIDTH];
|
| 1200 |
+
|
| 1201 |
+
for (int b = 0; b < batch; ++b){
|
| 1202 |
+
for (int head = 0; head < heads; ++head){
|
| 1203 |
+
int batch_shift = b * heads + head;
|
| 1204 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 1205 |
+
int w_index = (batch_shift * height + h + k) * width + w;
|
| 1206 |
+
if (w_index >= weight_total || w >= width) {
|
| 1207 |
+
weight[k] = 0;
|
| 1208 |
+
} else {
|
| 1209 |
+
scalar_t scale = scales[batch_shift * height + h + k];
|
| 1210 |
+
scalar_t zero = zeros[batch_shift * height + h + k];
|
| 1211 |
+
w_tmp = mat[w_index];
|
| 1212 |
+
weight[k] = scale * (w_tmp - zero);
|
| 1213 |
+
}
|
| 1214 |
+
}
|
| 1215 |
+
|
| 1216 |
+
scalar_t res;
|
| 1217 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1218 |
+
res = 0;
|
| 1219 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1220 |
+
if (vec_index < input_total) {
|
| 1221 |
+
blockvec[tid] = vec[vec_index];
|
| 1222 |
+
} else {
|
| 1223 |
+
blockvec[tid] = 0;
|
| 1224 |
+
}
|
| 1225 |
+
|
| 1226 |
+
__syncthreads();
|
| 1227 |
+
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
|
| 1228 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 1229 |
+
res += weight[k] * blockvec[k];
|
| 1230 |
+
}
|
| 1231 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 1232 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1233 |
+
if (out_index < out_total) {
|
| 1234 |
+
atomicAdd(&mul[out_index], res);
|
| 1235 |
+
}
|
| 1236 |
+
__syncthreads();
|
| 1237 |
+
}
|
| 1238 |
+
}
|
| 1239 |
+
}
|
| 1240 |
+
}
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
void vecquant4matmul_batched_old_cuda(
|
| 1244 |
+
torch::Tensor vec,
|
| 1245 |
+
torch::Tensor mat,
|
| 1246 |
+
torch::Tensor mul,
|
| 1247 |
+
torch::Tensor scales,
|
| 1248 |
+
torch::Tensor zeros
|
| 1249 |
+
) {
|
| 1250 |
+
int batch = vec.size(0);
|
| 1251 |
+
int heads = vec.size(1);
|
| 1252 |
+
int vec_row = vec.size(2);
|
| 1253 |
+
int vec_height = vec.size(3);
|
| 1254 |
+
int height = mat.size(2);
|
| 1255 |
+
int width = mat.size(3);
|
| 1256 |
+
int zero_width = zeros.size(2);
|
| 1257 |
+
|
| 1258 |
+
dim3 blocks(
|
| 1259 |
+
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
|
| 1260 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1261 |
+
);
|
| 1262 |
+
dim3 threads(BLOCKWIDTH);
|
| 1263 |
+
|
| 1264 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 1265 |
+
vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
|
| 1266 |
+
VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
|
| 1267 |
+
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
|
| 1268 |
+
scales.data<scalar_t>(), zeros.data<scalar_t>(),
|
| 1269 |
+
batch, heads, vec_row, vec_height, height, width, zero_width
|
| 1270 |
+
);
|
| 1271 |
+
})
|
| 1272 |
+
);
|
| 1273 |
+
|
| 1274 |
+
}
|
| 1275 |
+
|
| 1276 |
+
template <typename scalar_t>
|
| 1277 |
+
__global__ void VecQuant4BatchMatMulKernel_old(
|
| 1278 |
+
const scalar_t* __restrict__ vec,
|
| 1279 |
+
const uint8_t* __restrict__ mat,
|
| 1280 |
+
scalar_t* __restrict__ mul,
|
| 1281 |
+
const scalar_t* __restrict__ scales,
|
| 1282 |
+
const scalar_t* __restrict__ zeros,
|
| 1283 |
+
int batch,
|
| 1284 |
+
int heads,
|
| 1285 |
+
int vec_row,
|
| 1286 |
+
int vec_height,
|
| 1287 |
+
int height,
|
| 1288 |
+
int width,
|
| 1289 |
+
int zero_width
|
| 1290 |
+
) {
|
| 1291 |
+
int weight_total = batch * heads * height * width;
|
| 1292 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 1293 |
+
int out_total = batch * heads * vec_row * width;
|
| 1294 |
+
int tid = threadIdx.x;
|
| 1295 |
+
// h is index of height with step being BLOCKHEIGHT_OLD4
|
| 1296 |
+
int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
|
| 1297 |
+
// w is index of width with step being 1
|
| 1298 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 1299 |
+
if (w >= width && tid >= vec_height) {
|
| 1300 |
+
return;
|
| 1301 |
+
}
|
| 1302 |
+
|
| 1303 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 1304 |
+
// i is index of mat of block first row
|
| 1305 |
+
int i = width * h + w;
|
| 1306 |
+
int k;
|
| 1307 |
+
scalar_t w_tmp;
|
| 1308 |
+
|
| 1309 |
+
float weight[BLOCKWIDTH];
|
| 1310 |
+
for (int b = 0; b < batch; ++b){
|
| 1311 |
+
for (int head = 0; head < heads; ++head){
|
| 1312 |
+
int batch_shift = b * heads + head;
|
| 1313 |
+
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
|
| 1314 |
+
int k_w = (k / 2);
|
| 1315 |
+
int k_bit = (k % 2) * 4;
|
| 1316 |
+
int w_index = batch_shift * height * width + i + (k_w * width);
|
| 1317 |
+
if (w_index >= weight_total || w >= width) {
|
| 1318 |
+
weight[k] = 0;
|
| 1319 |
+
} else {
|
| 1320 |
+
scalar_t scale = scales[batch_shift * width + w];
|
| 1321 |
+
scalar_t zero = zeros[batch_shift * width + w];
|
| 1322 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
|
| 1323 |
+
weight[k] = scale * (w_tmp - zero);
|
| 1324 |
+
}
|
| 1325 |
+
}
|
| 1326 |
+
|
| 1327 |
+
scalar_t res;
|
| 1328 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1329 |
+
res = 0;
|
| 1330 |
+
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1331 |
+
if (vec_index < input_total) {
|
| 1332 |
+
blockvec[tid] = vec[vec_index];
|
| 1333 |
+
} else {
|
| 1334 |
+
blockvec[tid] = 0;
|
| 1335 |
+
}
|
| 1336 |
+
|
| 1337 |
+
__syncthreads();
|
| 1338 |
+
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
|
| 1339 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 1340 |
+
res += weight[k] * blockvec[k];
|
| 1341 |
+
}
|
| 1342 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 1343 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1344 |
+
if (out_index < out_total) {
|
| 1345 |
+
atomicAdd(&mul[out_index], res);
|
| 1346 |
+
}
|
| 1347 |
+
__syncthreads();
|
| 1348 |
+
}
|
| 1349 |
+
}
|
| 1350 |
+
}
|
| 1351 |
+
}
|
| 1352 |
+
|
| 1353 |
+
|
| 1354 |
+
|
| 1355 |
+
|
| 1356 |
+
|
| 1357 |
+
void vecquant4matmul_batched_column_compression_old_cuda(
|
| 1358 |
+
torch::Tensor vec,
|
| 1359 |
+
torch::Tensor mat,
|
| 1360 |
+
torch::Tensor mul,
|
| 1361 |
+
torch::Tensor scales,
|
| 1362 |
+
torch::Tensor zeros
|
| 1363 |
+
) {
|
| 1364 |
+
int batch = vec.size(0);
|
| 1365 |
+
int heads = vec.size(1);
|
| 1366 |
+
int vec_row = vec.size(2);
|
| 1367 |
+
int height = vec.size(3);
|
| 1368 |
+
int width = mat.size(3);
|
| 1369 |
+
|
| 1370 |
+
dim3 blocks(
|
| 1371 |
+
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
|
| 1372 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1373 |
+
);
|
| 1374 |
+
dim3 threads(BLOCKWIDTH);
|
| 1375 |
+
|
| 1376 |
+
AT_DISPATCH_FLOATING_TYPES(
|
| 1377 |
+
vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
|
| 1378 |
+
VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
|
| 1379 |
+
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
|
| 1380 |
+
scales.data<scalar_t>(), zeros.data<scalar_t>(),
|
| 1381 |
+
batch, heads, vec_row, height, width
|
| 1382 |
+
);
|
| 1383 |
+
})
|
| 1384 |
+
);
|
| 1385 |
+
|
| 1386 |
+
}
|
| 1387 |
+
|
| 1388 |
+
template <typename scalar_t>
|
| 1389 |
+
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
|
| 1390 |
+
const scalar_t* __restrict__ vec,
|
| 1391 |
+
const uint8_t* __restrict__ mat,
|
| 1392 |
+
scalar_t* __restrict__ mul,
|
| 1393 |
+
const scalar_t* __restrict__ scales,
|
| 1394 |
+
const scalar_t* __restrict__ zeros,
|
| 1395 |
+
int batch,
|
| 1396 |
+
int heads,
|
| 1397 |
+
int vec_row,
|
| 1398 |
+
int height,
|
| 1399 |
+
int width
|
| 1400 |
+
) {
|
| 1401 |
+
int weight_total = batch * heads * height * width;
|
| 1402 |
+
int input_total = batch * heads * vec_row * height;
|
| 1403 |
+
int out_total = batch * heads * vec_row * width;
|
| 1404 |
+
int tid = threadIdx.x;
|
| 1405 |
+
// h is index of height with step being BLOCKWIDTH
|
| 1406 |
+
int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
|
| 1407 |
+
// w is index of width with step being 1
|
| 1408 |
+
int w = BLOCKWIDTH * blockIdx.y + tid;
|
| 1409 |
+
if (w >= width && tid >= height) {
|
| 1410 |
+
return;
|
| 1411 |
+
}
|
| 1412 |
+
|
| 1413 |
+
__shared__ scalar_t blockvec[BLOCKWIDTH];
|
| 1414 |
+
int k;
|
| 1415 |
+
scalar_t w_tmp;
|
| 1416 |
+
|
| 1417 |
+
float weight[BLOCKWIDTH];
|
| 1418 |
+
|
| 1419 |
+
for (int b = 0; b < batch; ++b){
|
| 1420 |
+
for (int head = 0; head < heads; ++head){
|
| 1421 |
+
int batch_shift = b * heads + head;
|
| 1422 |
+
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
|
| 1423 |
+
int k_w = (k / 2);
|
| 1424 |
+
int k_bit = (k % 2) * 4;
|
| 1425 |
+
int w_index = (batch_shift * height + h + k) * width + k_w;
|
| 1426 |
+
if (w_index >= weight_total || w >= width) {
|
| 1427 |
+
weight[k] = 0;
|
| 1428 |
+
} else {
|
| 1429 |
+
scalar_t scale = scales[batch_shift * height + h + k];
|
| 1430 |
+
scalar_t zero = zeros[batch_shift * height + h + k];
|
| 1431 |
+
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
|
| 1432 |
+
weight[k] = scale * (w_tmp - zero);
|
| 1433 |
+
}
|
| 1434 |
+
}
|
| 1435 |
+
|
| 1436 |
+
scalar_t res;
|
| 1437 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1438 |
+
res = 0;
|
| 1439 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1440 |
+
if (vec_index < input_total) {
|
| 1441 |
+
blockvec[tid] = vec[vec_index];
|
| 1442 |
+
} else {
|
| 1443 |
+
blockvec[tid] = 0;
|
| 1444 |
+
}
|
| 1445 |
+
|
| 1446 |
+
__syncthreads();
|
| 1447 |
+
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
|
| 1448 |
+
// res is the dot product of BLOCKWIDTH elements (part of width)
|
| 1449 |
+
res += weight[k] * blockvec[k];
|
| 1450 |
+
}
|
| 1451 |
+
// add res to the final result, final matrix shape: (batch, vec_row, width)
|
| 1452 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1453 |
+
if (out_index < out_total) {
|
| 1454 |
+
atomicAdd(&mul[out_index], res);
|
| 1455 |
+
}
|
| 1456 |
+
__syncthreads();
|
| 1457 |
+
}
|
| 1458 |
+
}
|
| 1459 |
+
}
|
| 1460 |
+
}
|
| 1461 |
+
|
| 1462 |
+
|
| 1463 |
+
|
| 1464 |
+
|
| 1465 |
+
|
| 1466 |
+
void vecquant8matmul_batched_faster_old_cuda(
|
| 1467 |
+
torch::Tensor vec,
|
| 1468 |
+
torch::Tensor mat,
|
| 1469 |
+
torch::Tensor mul,
|
| 1470 |
+
torch::Tensor scales,
|
| 1471 |
+
torch::Tensor zeros
|
| 1472 |
+
) {
|
| 1473 |
+
int batch = vec.size(0);
|
| 1474 |
+
int heads = vec.size(1);
|
| 1475 |
+
int vec_row = vec.size(2);
|
| 1476 |
+
int vec_height = vec.size(3);
|
| 1477 |
+
int height = mat.size(2);
|
| 1478 |
+
int width = mat.size(3);
|
| 1479 |
+
|
| 1480 |
+
dim3 blocks(
|
| 1481 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 1482 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1483 |
+
);
|
| 1484 |
+
dim3 threads(BLOCKWIDTH);
|
| 1485 |
+
|
| 1486 |
+
VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
|
| 1487 |
+
(half*) vec.data_ptr(),
|
| 1488 |
+
(uint8_t*) mat.data_ptr(),
|
| 1489 |
+
(half*) mul.data_ptr(),
|
| 1490 |
+
(half*) scales.data_ptr(),
|
| 1491 |
+
(half*) zeros.data_ptr(),
|
| 1492 |
+
batch, heads, vec_row, vec_height, height, width
|
| 1493 |
+
);
|
| 1494 |
+
}
|
| 1495 |
+
|
| 1496 |
+
|
| 1497 |
+
__global__ void VecQuant8BatchMatMulKernel_faster_old(
|
| 1498 |
+
const half* __restrict__ vec,
|
| 1499 |
+
const uint8_t* __restrict__ mat,
|
| 1500 |
+
half* __restrict__ mul,
|
| 1501 |
+
const half* __restrict__ scales,
|
| 1502 |
+
const half* __restrict__ zeros,
|
| 1503 |
+
int batch,
|
| 1504 |
+
int heads,
|
| 1505 |
+
int vec_row,
|
| 1506 |
+
int vec_height,
|
| 1507 |
+
int height,
|
| 1508 |
+
int width
|
| 1509 |
+
) {
|
| 1510 |
+
int weight_total = batch * heads * height * width;
|
| 1511 |
+
int input_total = batch * heads * vec_row * vec_height;
|
| 1512 |
+
int out_total = batch * heads * vec_row * width;
|
| 1513 |
+
int tid = threadIdx.x;
|
| 1514 |
+
const int BLOCKWIDTH_half = BLOCKWIDTH/2;
|
| 1515 |
+
|
| 1516 |
+
int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
|
| 1517 |
+
int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
|
| 1518 |
+
/*
|
| 1519 |
+
if (w >= width && tid >= vec_height) {
|
| 1520 |
+
return;
|
| 1521 |
+
}
|
| 1522 |
+
*/
|
| 1523 |
+
__shared__ half blockvec[BLOCKWIDTH]; //256
|
| 1524 |
+
int i = width * h + w;
|
| 1525 |
+
int k;
|
| 1526 |
+
|
| 1527 |
+
half w_tmp1 = __float2half(0);
|
| 1528 |
+
half w_tmp2 = __float2half(0);
|
| 1529 |
+
|
| 1530 |
+
half2 weight[BLOCKWIDTH_half];
|
| 1531 |
+
for (int b = 0; b < batch; ++b){
|
| 1532 |
+
for (int head = 0; head < heads; ++head){
|
| 1533 |
+
int batch_shift = b * heads + head;
|
| 1534 |
+
//int zero_index = batch_shift;
|
| 1535 |
+
for (k = 0; k < BLOCKWIDTH_half; ++k){
|
| 1536 |
+
int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
|
| 1537 |
+
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
|
| 1538 |
+
int zero_index = batch_shift * width + w; // [batch,head, w]
|
| 1539 |
+
if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
|
| 1540 |
+
weight[k] = __float2half2_rn(0);
|
| 1541 |
+
} else {
|
| 1542 |
+
float zero_f=__half2float(zeros[zero_index]);
|
| 1543 |
+
float scale_f= __half2float(scales[zero_index]);
|
| 1544 |
+
if (w_index2 >= weight_total){
|
| 1545 |
+
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
|
| 1546 |
+
w_tmp2 = __float2half(0);
|
| 1547 |
+
weight[k] = __halves2half2(w_tmp1,w_tmp2);
|
| 1548 |
+
//printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
|
| 1549 |
+
}else{
|
| 1550 |
+
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
|
| 1551 |
+
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
|
| 1552 |
+
|
| 1553 |
+
//weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
|
| 1554 |
+
weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
|
| 1555 |
+
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
|
| 1556 |
+
}
|
| 1557 |
+
}
|
| 1558 |
+
}
|
| 1559 |
+
|
| 1560 |
+
|
| 1561 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1562 |
+
float res=0;
|
| 1563 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1564 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1565 |
+
if (vec_index < input_total) {
|
| 1566 |
+
//blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
|
| 1567 |
+
blockvec[tid] = vec[vec_index];
|
| 1568 |
+
//printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
|
| 1569 |
+
} else {
|
| 1570 |
+
blockvec[tid] = __float2half(0);
|
| 1571 |
+
}
|
| 1572 |
+
__syncthreads();
|
| 1573 |
+
if (out_index < out_total) {
|
| 1574 |
+
for (k = 0; k < BLOCKWIDTH_half; ++k){
|
| 1575 |
+
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
|
| 1576 |
+
res += __low2float(res2) + __high2float(res2);
|
| 1577 |
+
}
|
| 1578 |
+
atomicAdd(&mul[out_index], __float2half(res));
|
| 1579 |
+
}
|
| 1580 |
+
__syncthreads();
|
| 1581 |
+
}
|
| 1582 |
+
}
|
| 1583 |
+
}
|
| 1584 |
+
}
|
| 1585 |
+
|
| 1586 |
+
|
| 1587 |
+
void vecquant8matmul_batched_column_compression_faster_old_cuda(
|
| 1588 |
+
torch::Tensor vec, // [batch,heads, seq_q, seq_v]
|
| 1589 |
+
torch::Tensor mat, // [batch,heads, seq_v, head_dim]
|
| 1590 |
+
torch::Tensor mul, // [batch,heads, seq_q,head_dim]
|
| 1591 |
+
torch::Tensor scales, // [batch,heads, head_dim]
|
| 1592 |
+
torch::Tensor zeros
|
| 1593 |
+
) {
|
| 1594 |
+
int batch = vec.size(0);
|
| 1595 |
+
int heads = vec.size(1);
|
| 1596 |
+
int vec_row = vec.size(2); //ql
|
| 1597 |
+
int height = mat.size(2); //vl
|
| 1598 |
+
int width = mat.size(3); //head_dim
|
| 1599 |
+
|
| 1600 |
+
dim3 blocks(
|
| 1601 |
+
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
|
| 1602 |
+
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
|
| 1603 |
+
);
|
| 1604 |
+
dim3 threads(BLOCKWIDTH);
|
| 1605 |
+
|
| 1606 |
+
VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
|
| 1607 |
+
(half*) vec.data_ptr(),
|
| 1608 |
+
(uint8_t*) mat.data_ptr(),
|
| 1609 |
+
(half*) mul.data_ptr(),
|
| 1610 |
+
(half*) scales.data_ptr(),
|
| 1611 |
+
(half*) zeros.data_ptr(),
|
| 1612 |
+
batch, heads, vec_row, height, width
|
| 1613 |
+
);
|
| 1614 |
+
|
| 1615 |
+
}
|
| 1616 |
+
|
| 1617 |
+
|
| 1618 |
+
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
|
| 1619 |
+
const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
|
| 1620 |
+
const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
|
| 1621 |
+
half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
|
| 1622 |
+
const half* __restrict__ scales, // [batch,heads, seq_v]
|
| 1623 |
+
const half* __restrict__ zeros,
|
| 1624 |
+
int batch,
|
| 1625 |
+
int heads,
|
| 1626 |
+
int vec_row, //seq_q
|
| 1627 |
+
int height, //seq_v
|
| 1628 |
+
int width //head_dim
|
| 1629 |
+
) {
|
| 1630 |
+
int weight_total = batch * heads * height * width;
|
| 1631 |
+
int input_total = batch * heads * vec_row * height;
|
| 1632 |
+
int out_total = batch * heads * vec_row * width;
|
| 1633 |
+
int tid = threadIdx.x;
|
| 1634 |
+
int h = BLOCKWIDTH * blockIdx.x; // vl
|
| 1635 |
+
int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
|
| 1636 |
+
if (w >= width && tid >= height) {
|
| 1637 |
+
return;
|
| 1638 |
+
}
|
| 1639 |
+
__shared__ half blockvec[BLOCKWIDTH];
|
| 1640 |
+
int k;
|
| 1641 |
+
half w_tmp1 = __float2half(0);
|
| 1642 |
+
half w_tmp2 = __float2half(0);
|
| 1643 |
+
int i = width * h + w;
|
| 1644 |
+
const int BLOCKWIDTH_half = BLOCKWIDTH/2;
|
| 1645 |
+
half2 weight[BLOCKWIDTH_half];
|
| 1646 |
+
|
| 1647 |
+
for (int b = 0; b < batch; ++b){
|
| 1648 |
+
for (int head = 0; head < heads; ++head){
|
| 1649 |
+
int batch_shift = b * heads + head;
|
| 1650 |
+
//int zero_index = batch_shift;
|
| 1651 |
+
for (k = 0; k < BLOCKWIDTH_half; ++k){
|
| 1652 |
+
int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
|
| 1653 |
+
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
|
| 1654 |
+
int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
|
| 1655 |
+
int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
|
| 1656 |
+
|
| 1657 |
+
if (w_index1 >= weight_total || (2 * k + h)>=height) {
|
| 1658 |
+
weight[k]=__float2half2_rn(0);
|
| 1659 |
+
} else{
|
| 1660 |
+
//int zero_index = batch_shift + h; // [batch,head, w]
|
| 1661 |
+
//float scale_f1 = __half2float(scales[zero_index1]);
|
| 1662 |
+
//float zero_f1 = __half2float(zeros[zero_index1]);
|
| 1663 |
+
if (w_index2>=weight_total){
|
| 1664 |
+
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
|
| 1665 |
+
w_tmp2 = __float2half(0);
|
| 1666 |
+
weight[k] = __halves2half2(w_tmp1,w_tmp2);
|
| 1667 |
+
//printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
|
| 1668 |
+
}else{
|
| 1669 |
+
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
|
| 1670 |
+
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
|
| 1671 |
+
half zero1=zeros[zero_index1];
|
| 1672 |
+
half zero2=zeros[zero_index2];
|
| 1673 |
+
half scale1=scales[zero_index1];
|
| 1674 |
+
half scale2=scales[zero_index2];
|
| 1675 |
+
weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
|
| 1676 |
+
//weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
|
| 1677 |
+
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
|
| 1678 |
+
}
|
| 1679 |
+
}
|
| 1680 |
+
}
|
| 1681 |
+
|
| 1682 |
+
|
| 1683 |
+
for (int vr = 0; vr < vec_row; ++vr){
|
| 1684 |
+
float res=0;
|
| 1685 |
+
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
|
| 1686 |
+
int out_index = (batch_shift * vec_row + vr) * width + w;
|
| 1687 |
+
|
| 1688 |
+
if (vec_index < input_total) {
|
| 1689 |
+
//blockvec[tid] = __half2float(vec[vec_index]);
|
| 1690 |
+
blockvec[tid] = vec[vec_index];
|
| 1691 |
+
//printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
|
| 1692 |
+
} else {
|
| 1693 |
+
blockvec[tid] = __float2half(0);
|
| 1694 |
+
//blockvec[tid] = 0;
|
| 1695 |
+
}
|
| 1696 |
+
__syncthreads();
|
| 1697 |
+
if (out_index < out_total) {
|
| 1698 |
+
for (k = 0; k < BLOCKWIDTH_half; ++k){
|
| 1699 |
+
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
|
| 1700 |
+
res += __low2float(res2) + __high2float(res2);
|
| 1701 |
+
}
|
| 1702 |
+
atomicAdd(&mul[out_index], __float2half(res));
|
| 1703 |
+
}
|
| 1704 |
+
__syncthreads();
|
| 1705 |
+
}
|
| 1706 |
+
}
|
| 1707 |
+
}
|
| 1708 |
+
}
|
| 1709 |
+
|
config.json
CHANGED
|
@@ -16,24 +16,24 @@
|
|
| 16 |
"intermediate_size": 49152,
|
| 17 |
"kv_channels": 128,
|
| 18 |
"layer_norm_epsilon": 1e-06,
|
| 19 |
-
"max_position_embeddings":
|
| 20 |
"model_type": "qwen",
|
| 21 |
"no_bias": true,
|
| 22 |
"num_attention_heads": 64,
|
| 23 |
"num_hidden_layers": 80,
|
| 24 |
"onnx_safe": null,
|
| 25 |
-
"padded_vocab_size": 152064,
|
| 26 |
"rope_theta": 1000000,
|
| 27 |
"rotary_emb_base": 1000000,
|
| 28 |
"rotary_pct": 1.0,
|
| 29 |
"scale_attn_weights": true,
|
| 30 |
-
"seq_length":
|
| 31 |
"tie_word_embeddings": false,
|
| 32 |
-
"
|
| 33 |
"transformers_version": "4.32.0",
|
| 34 |
"use_cache": true,
|
| 35 |
"use_dynamic_ntk": false,
|
| 36 |
"use_flash_attn": "auto",
|
| 37 |
"use_logn_attn": false,
|
| 38 |
"vocab_size": 152064
|
| 39 |
-
}
|
|
|
|
|
|
| 16 |
"intermediate_size": 49152,
|
| 17 |
"kv_channels": 128,
|
| 18 |
"layer_norm_epsilon": 1e-06,
|
| 19 |
+
"max_position_embeddings": 32768,
|
| 20 |
"model_type": "qwen",
|
| 21 |
"no_bias": true,
|
| 22 |
"num_attention_heads": 64,
|
| 23 |
"num_hidden_layers": 80,
|
| 24 |
"onnx_safe": null,
|
|
|
|
| 25 |
"rope_theta": 1000000,
|
| 26 |
"rotary_emb_base": 1000000,
|
| 27 |
"rotary_pct": 1.0,
|
| 28 |
"scale_attn_weights": true,
|
| 29 |
+
"seq_length": 32768,
|
| 30 |
"tie_word_embeddings": false,
|
| 31 |
+
"tokenizer_class": "QWenTokenizer",
|
| 32 |
"transformers_version": "4.32.0",
|
| 33 |
"use_cache": true,
|
| 34 |
"use_dynamic_ntk": false,
|
| 35 |
"use_flash_attn": "auto",
|
| 36 |
"use_logn_attn": false,
|
| 37 |
"vocab_size": 152064
|
| 38 |
+
}
|
| 39 |
+
|
configuration_qwen.py
CHANGED
|
@@ -69,3 +69,4 @@ class QWenConfig(PretrainedConfig):
|
|
| 69 |
tie_word_embeddings=tie_word_embeddings,
|
| 70 |
**kwargs
|
| 71 |
)
|
|
|
|
|
|
| 69 |
tie_word_embeddings=tie_word_embeddings,
|
| 70 |
**kwargs
|
| 71 |
)
|
| 72 |
+
|
cpp_kernels.py
CHANGED
|
@@ -53,3 +53,4 @@ extra_flags = []
|
|
| 53 |
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
|
| 54 |
"./cache_autogptq_cuda_kernel_256.cu"]
|
| 55 |
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
|
|
|
|
|
|
| 53 |
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
|
| 54 |
"./cache_autogptq_cuda_kernel_256.cu"]
|
| 55 |
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
|
| 56 |
+
|
generation_config.json
CHANGED
|
@@ -11,6 +11,5 @@
|
|
| 11 |
],
|
| 12 |
"top_k": 0,
|
| 13 |
"top_p": 0.8,
|
| 14 |
-
"transformers_version": "4.
|
| 15 |
-
"trust_remote_code": true
|
| 16 |
}
|
|
|
|
| 11 |
],
|
| 12 |
"top_k": 0,
|
| 13 |
"top_p": 0.8,
|
| 14 |
+
"transformers_version": "4.31.0"
|
|
|
|
| 15 |
}
|
model-00001-of-00019.safetensors → model-00001-of-00082.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b78ee20c52beb8ba28d6374ffe6032f748d6b69dbe1f628c3f9c937ff06313c
|
| 3 |
+
size 2491416712
|
model-00002-of-00019.safetensors → model-00002-of-00082.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02bf377c7bcfc90e1b4008b656a082f9fcfeb1dc55987968c43d1d33e44eb8fa
|
| 3 |
+
size 1744929752
|
model-00003-of-00019.safetensors → model-00003-of-00082.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40907288644d9da2cf41520809cd603d553187cdc5d2eaf21812ba1af1628815
|
| 3 |
+
size 1744913264
|
model-00004-of-00019.safetensors → model-00004-of-00082.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3e3f62cbe8f1d6ca15517a3dea22f0e449f4431dcd91d15c30ce0ed3b21be34
|
| 3 |
+
size 1744913264
|
model-00005-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:258b03abf1c9406e112d2870bbfd2e03dcdbc5aa68872940267f6c11f7586987
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00005-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a1c42a60428793fc54596b2858341d14214977c11e05a838f806e44a29c6c2b
|
| 3 |
+
size 1744913264
|
model-00006-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:cab322ac7b5b4be68b42112927661731d75e30ec7188d48d21e5bac72961946c
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00006-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c12658ed8b3bb368fd34082cba78cbabaf1bfaf4df105963f0d4475bfe15695
|
| 3 |
+
size 1744913264
|
model-00007-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:65587e3949fcaa350f1b811e8e840978dc64ed39ab3ca0265a842dc3722bff03
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00007-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:751273ae27cd581b2243962c8effdeefb728ff958ba3ec3d8850d700f65f66e3
|
| 3 |
+
size 1744913264
|
model-00008-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e1eb2c16da1f926dd495874774b0328b5646063a118113dd1fcbbeea6e924390
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00008-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3505728188463041693baf15441339db200e4e74d036f7a7938b8f3198c9e2c1
|
| 3 |
+
size 1744913264
|
model-00009-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:2bf8d5e061b590a4888a49512e7ed0fac09f20c944c63761416f81b53a895d1b
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00009-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9b548e1922b72c1a299420199922b64507b32d83dc034e5521a1e847f321d88
|
| 3 |
+
size 1744913264
|
model-00010-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:326b64c09d13e394e62752b39ff4eb9c7ea8f90db26b47f2b1fa842b3661ead6
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00010-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76f16336c29b5ab0ef1b22905dd03a1d31f270cf8ab601d886642a9e7ed474a7
|
| 3 |
+
size 1744913264
|
model-00011-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:ce703106349e3bfe847945e8930bbf1407a736062cbe8c87de3d30c141618e1c
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00011-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d29b3a6cf8b3fab521a394e3d895c8c936d231880b02b8b617eda0779be244ba
|
| 3 |
+
size 1744913256
|
model-00012-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:17dbfa26cb0d50019d4a457a671d58815e25d210fdad706e0f4fb6643269acb1
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00012-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8045521fc95b1ecf0bff8de6e0e348060fcc680e1a93a2015ac39e1d040b9210
|
| 3 |
+
size 1744913272
|
model-00013-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7975c4b8b0425797dfb035c39f381e3fdf05c433671a80486455c0fb286c675b
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00013-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb8615b845f6fc1e25fa9bae1cba90b28ef4770e60e7495e0eb40927523f5973
|
| 3 |
+
size 1744913272
|
model-00014-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:df5b7d68c23252a0b5ca8aa6d572abad64f2ab87dffcd3d3d8828dd942286090
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00014-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7c7ea4e7e2eee94f220df6be6e297eecf4fdac2920515ba3677b36b7447c19f
|
| 3 |
+
size 1744913272
|
model-00015-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8219ccd36a7d5f468b26f679e3874ac4e3f4bdf2a224766e06972eb70b3529da
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00015-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c201c3ca71b2a33e4740be67c15bbe6142227a884303434b82104a6fbb4ab696
|
| 3 |
+
size 1744913272
|
model-00016-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f8a1c79a5df0051a079f5e13f3dee9156a77fbdf2063c5da91f577bc187304da
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00016-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe85f55f16678c2b875854bd24e0fe40f239c6db511975c5afe704df9d666979
|
| 3 |
+
size 1744913272
|
model-00017-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f7c1a3fd1a8fe6905ba012dcbd69c6fb5cfde8257919eff12bef3b61e0414e2d
|
| 3 |
-
size 7784976144
|
|
|
|
|
|
|
|
|
|
|
|
model-00017-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6575a40ace3de35b1e596f261c618de5bb7d6d33c929d7f2a6380882b972a7c
|
| 3 |
+
size 1744913272
|
model-00018-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c0b24fd0c929e113faa73a5190af0132ca16b92358b510689ca7c11b1853af73
|
| 3 |
-
size 7919243232
|
|
|
|
|
|
|
|
|
|
|
|
model-00018-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed694a7e792b79d63997d73ff81940dd22be41980c877e4cc1433fedf5e755e1
|
| 3 |
+
size 1744913272
|
model-00019-of-00019.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a4898686a612d742a7d1d91b61647fa4b3cfd2d73508c0fdd17833121cef696c
|
| 3 |
-
size 3296739776
|
|
|
|
|
|
|
|
|
|
|
|
model-00019-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:256ccda665443b2c7c502fbb654923f71974f98557bd7c84f620eaff73f9ed85
|
| 3 |
+
size 1744913272
|
model-00020-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:616bec5738703a2364f596c3366f9544e3d8a89c1eb9181bd3b7242af5be5619
|
| 3 |
+
size 1744913272
|
model-00021-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1602b5003fceb753025cd16c87288b65416524c8b8668fe4b0c920820c67cca
|
| 3 |
+
size 1744913272
|
model-00022-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75b7178fd929c3fd4ccd4168db338ab199c6b7ddc896fddb83d83c7ccded4f54
|
| 3 |
+
size 1744913272
|
model-00023-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9cf968f7a6df52eddb5302047b7c4ab5eb74d980467a70b6b9f7cdb987cd570
|
| 3 |
+
size 1744913272
|
model-00024-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b032889a50034c59792c7cdd17192684bb643890536bd7393807e9652e25c686
|
| 3 |
+
size 1744913272
|
model-00025-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5520809074d934cb07215125db6e95cb139c729e54c4417f4f349df913d1b75e
|
| 3 |
+
size 1744913272
|
model-00026-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbeb8d2f8b8450d588aaf2d28f1b1ef02563e430ed84ab71bc7cb982fa969100
|
| 3 |
+
size 1744913272
|
model-00027-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf91b60f20eb6db66d714d8392a153665fe96c225b9dbbb9aa1482cf8dcd1a82
|
| 3 |
+
size 1744913272
|
model-00028-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2701e032245071c17206586132bd904469404566bddd5310b1402e98c13eb53d
|
| 3 |
+
size 1744913272
|
model-00029-of-00082.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ca6761b06d113acf9ce64f2cb17215be4d789540cd80fcaf1ed911f49cebe8d
|
| 3 |
+
size 1744913272
|