|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Tokenization classes for RWKV.""" | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | from typing import TYPE_CHECKING, List, Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = { | 
					
						
						|  | "vocab_file": "rwkv_vocab_v20230424.txt", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | class TRIE: | 
					
						
						|  | __slots__ = tuple("ch,to,values,front".split(",")) | 
					
						
						|  | to: list | 
					
						
						|  | values: set | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, front=None, ch=None): | 
					
						
						|  | self.ch = ch | 
					
						
						|  | self.to = [None for ch in range(256)] | 
					
						
						|  | self.values = set() | 
					
						
						|  | self.front = front | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | fr = self | 
					
						
						|  | ret = [] | 
					
						
						|  | while fr != None: | 
					
						
						|  | if fr.ch != None: | 
					
						
						|  | ret.append(fr.ch) | 
					
						
						|  | fr = fr.front | 
					
						
						|  | return "<TRIE %s %s>" % (ret[::-1], self.values) | 
					
						
						|  |  | 
					
						
						|  | def add(self, key: bytes, idx: int = 0, val=None): | 
					
						
						|  | if idx == len(key): | 
					
						
						|  | if val is None: | 
					
						
						|  | val = key | 
					
						
						|  | self.values.add(val) | 
					
						
						|  | return self | 
					
						
						|  | ch = key[idx] | 
					
						
						|  | if self.to[ch] is None: | 
					
						
						|  | self.to[ch] = TRIE(front=self, ch=ch) | 
					
						
						|  | return self.to[ch].add(key, idx=idx + 1, val=val) | 
					
						
						|  |  | 
					
						
						|  | def find_longest(self, key: bytes, idx: int = 0): | 
					
						
						|  | u: TRIE = self | 
					
						
						|  | ch: int = key[idx] | 
					
						
						|  |  | 
					
						
						|  | while u.to[ch] is not None: | 
					
						
						|  | u = u.to[ch] | 
					
						
						|  | idx += 1 | 
					
						
						|  | if u.values: | 
					
						
						|  | ret = idx, u, u.values | 
					
						
						|  | if idx == len(key): | 
					
						
						|  | break | 
					
						
						|  | ch = key[idx] | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RWKV_TOKENIZER: | 
					
						
						|  | def __init__(self, file_name): | 
					
						
						|  | self.idx2token = {} | 
					
						
						|  | sorted = [] | 
					
						
						|  | with open(file_name, "r", encoding="utf-8") as f: | 
					
						
						|  | lines = f.readlines() | 
					
						
						|  | for l in lines: | 
					
						
						|  | idx = int(l[: l.index(" ")]) | 
					
						
						|  | x = eval(l[l.index(" ") : l.rindex(" ")]) | 
					
						
						|  | x = x.encode("utf-8") if isinstance(x, str) else x | 
					
						
						|  | assert isinstance(x, bytes) | 
					
						
						|  |  | 
					
						
						|  | assert len(x) == int(l[l.rindex(" ") :]) | 
					
						
						|  | sorted += [x] | 
					
						
						|  | self.idx2token[idx] = x | 
					
						
						|  |  | 
					
						
						|  | self.token2idx = {} | 
					
						
						|  | for k, v in self.idx2token.items(): | 
					
						
						|  | self.token2idx[v] = int(k) | 
					
						
						|  |  | 
					
						
						|  | self.root = TRIE() | 
					
						
						|  | for t, i in self.token2idx.items(): | 
					
						
						|  | _ = self.root.add(t, val=(t, i)) | 
					
						
						|  |  | 
					
						
						|  | def encodeBytes(self, src: bytes): | 
					
						
						|  | idx: int = 0 | 
					
						
						|  | tokens = [] | 
					
						
						|  | while idx < len(src): | 
					
						
						|  | _idx: int = idx | 
					
						
						|  | idx, _, values = self.root.find_longest(src, idx) | 
					
						
						|  | assert idx != _idx | 
					
						
						|  | _, token = next(iter(values)) | 
					
						
						|  | tokens.append(token) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | def decodeBytes(self, tokens): | 
					
						
						|  | return b"".join(map(lambda i: self.idx2token[i], tokens)) | 
					
						
						|  |  | 
					
						
						|  | def encode(self, src): | 
					
						
						|  | if isinstance(src, str): | 
					
						
						|  | return [self.encodeBytes(src.encode("utf-8"))] | 
					
						
						|  | elif isinstance(src, list): | 
					
						
						|  | return [self.encodeBytes(s.encode("utf-8")) for s in src] | 
					
						
						|  |  | 
					
						
						|  | def decode(self, tokens): | 
					
						
						|  | return [self.decodeBytes(batch).decode("utf-8") for batch in tokens] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def printTokens(self, tokens): | 
					
						
						|  | for i in tokens: | 
					
						
						|  | s = self.idx2token[i] | 
					
						
						|  | try: | 
					
						
						|  | s = s.decode("utf-8") | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  | print(f"{repr(s)}{i}", end=" ") | 
					
						
						|  | print() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RwkvTokenizer(PreTrainedTokenizer): | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, vocab_file, bos_token="<|rwkv_tokenizer_end_of_text|>", eos_token="<|rwkv_tokenizer_end_of_text|>", unk_token="<|rwkv_tokenizer_end_of_text|>", **kwargs | 
					
						
						|  | ): | 
					
						
						|  | if not os.path.isfile(vocab_file): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Can't find a vocabulary file at path '{vocab_file}'." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "r", encoding="utf-8") as reader: | 
					
						
						|  | tokens = reader.readlines() | 
					
						
						|  |  | 
					
						
						|  | if "add_bos_token" in kwargs: | 
					
						
						|  | self.add_bos_token = kwargs["add_bos_token"] | 
					
						
						|  | else: | 
					
						
						|  | self.add_bos_token = False | 
					
						
						|  | self.trie_tokenizer = RWKV_TOKENIZER(vocab_file) | 
					
						
						|  | vocab = self.trie_tokenizer.token2idx | 
					
						
						|  | self.encoder = vocab | 
					
						
						|  | self.decoder = {v: k for k, v in vocab.items()} | 
					
						
						|  | self._added_tokens_decoder = {0: AddedToken(str(bos_token))} | 
					
						
						|  | super().__init__( | 
					
						
						|  | bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return len(self.encoder) | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | vocab = self.encoder | 
					
						
						|  | vocab.update(self.added_tokens_encoder) | 
					
						
						|  | vocab = dict(sorted(vocab.items(), key=lambda item: item[1])) | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text, split_special_tokens=False): | 
					
						
						|  |  | 
					
						
						|  | return self.trie_tokenizer.encode(text)[0] | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | return token | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (byte) using the vocab.""" | 
					
						
						|  | token = self.decoder.get(index, self.unk_token) | 
					
						
						|  | if isinstance(token, (bytes)): | 
					
						
						|  | token = token.decode("utf-8", errors="replace") | 
					
						
						|  | return token | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens): | 
					
						
						|  | """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" | 
					
						
						|  | out_string = b"".join( | 
					
						
						|  | [k.encode(errors="replace") if isinstance(k, str) else k for k in tokens] | 
					
						
						|  | ).decode("utf-8") | 
					
						
						|  | return out_string | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary( | 
					
						
						|  | self, save_directory: str, filename_prefix: Optional[str] = None | 
					
						
						|  | ) -> Tuple[str]: | 
					
						
						|  | index = 0 | 
					
						
						|  | if os.path.isdir(save_directory): | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, | 
					
						
						|  | (filename_prefix + "-" if filename_prefix else "") + "vocab.txt", | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | vocab_file = ( | 
					
						
						|  | filename_prefix + "-" if filename_prefix else "" | 
					
						
						|  | ) + save_directory | 
					
						
						|  | with open(vocab_file, "w", encoding="utf-8") as writer: | 
					
						
						|  | for token, token_index in sorted( | 
					
						
						|  | self.encoder.items(), key=lambda kv: kv[1] | 
					
						
						|  | ): | 
					
						
						|  | if index != token_index: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." | 
					
						
						|  | " Please check that the vocabulary is not corrupted!" | 
					
						
						|  | ) | 
					
						
						|  | index = token_index | 
					
						
						|  | writer.write(str(token) + "\n") | 
					
						
						|  | index += 1 | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | 
					
						
						|  | if self.add_bos_token: | 
					
						
						|  | bos_token_ids = [self.bos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | bos_token_ids = [] | 
					
						
						|  |  | 
					
						
						|  | output = bos_token_ids + token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | return output + bos_token_ids + token_ids_1 | 
					
						
						|  |  | 
					
						
						|  | def get_special_tokens_mask( | 
					
						
						|  | self, | 
					
						
						|  | token_ids_0: List[int], | 
					
						
						|  | token_ids_1: Optional[List[int]] = None, | 
					
						
						|  | already_has_special_tokens: bool = False, | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding | 
					
						
						|  | special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | already_has_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the token list is already formatted with special tokens for the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | 
					
						
						|  | """ | 
					
						
						|  | if already_has_special_tokens: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, | 
					
						
						|  | token_ids_1=token_ids_1, | 
					
						
						|  | already_has_special_tokens=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not self.add_bos_token: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, | 
					
						
						|  | token_ids_1=token_ids_1, | 
					
						
						|  | already_has_special_tokens=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) | 
					
						
						|  |  |