Update generation_fast.py
Browse files- generation_fast.py +42 -23
generation_fast.py
CHANGED
|
@@ -1,30 +1,49 @@
|
|
| 1 |
-
# generation_fast.py
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
-
self.model.to(self.device)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
max_length=max_length,
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
length_penalty=1.0, # Adjust length penalty
|
| 21 |
-
temperature=1.0, # Adjust temperature for diversity
|
| 22 |
)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
|
|
|
| 26 |
if __name__ == "__main__":
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
print(generated_code)
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
# Load model and tokenizer
|
| 5 |
+
model_name = "your_model_repo"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Ensure special tokens and preprocessing settings are applied
|
| 10 |
+
if tokenizer.special_tokens_map is None:
|
| 11 |
+
tokenizer.special_tokens_map = {
|
| 12 |
+
"bos_token": "<s>",
|
| 13 |
+
"eos_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>",
|
| 15 |
+
"sep_token": "</s>",
|
| 16 |
+
"pad_token": "<pad>",
|
| 17 |
+
"cls_token": "<s>",
|
| 18 |
+
"mask_token": "<mask>"
|
| 19 |
+
}
|
| 20 |
+
tokenizer.save_pretrained(model_name)
|
| 21 |
+
|
| 22 |
+
preprocessor_config = {
|
| 23 |
+
"do_lower_case": False,
|
| 24 |
+
"max_length": 128,
|
| 25 |
+
"truncation": True,
|
| 26 |
+
"padding": "max_length"
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# Define a function for text generation
|
| 30 |
+
def generate_code(prompt, max_length=128, temperature=0.7, top_p=0.9):
|
| 31 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=preprocessor_config["max_length"])
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model.generate(
|
| 35 |
+
input_ids=inputs["input_ids"],
|
| 36 |
+
attention_mask=inputs["attention_mask"],
|
| 37 |
max_length=max_length,
|
| 38 |
+
temperature=temperature,
|
| 39 |
+
top_p=top_p,
|
| 40 |
+
do_sample=True
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
+
|
| 43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
|
| 45 |
+
# Example usage
|
| 46 |
if __name__ == "__main__":
|
| 47 |
+
prompt = "def quicksort(arr):"
|
| 48 |
+
generated_code = generate_code(prompt)
|
| 49 |
+
print("Generated Code:\n", generated_code)
|
|
|