File size: 28,798 Bytes
ce5618e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import dataclasses
import functools
import logging
import platform
from typing import Any, Optional, Dict, Tuple

import etils.epath as epath
import flax.nnx as nnx
from flax.training import common_utils
import flax.traverse_util as traverse_util
import jax
import jax.experimental
import jax.numpy as jnp
import numpy as np
import optax
import tqdm_loggable.auto as tqdm
import wandb
import numpy as np

import openpi.models.model as _model
import openpi.shared.array_typing as at
import openpi.shared.nnx_utils as nnx_utils
import openpi.training.checkpoints as _checkpoints
import openpi.training.config as _config
import openpi.training.data_loader as _data_loader
import openpi.training.optimizer as _optimizer
import openpi.training.sharding as sharding
import openpi.training.utils as training_utils
import openpi.training.weight_loaders as _weight_loaders
from flax.nnx import rnglib
from openpi.models.pi0_fast import Pi0FAST, make_attn_mask


@dataclasses.dataclass
class OftTrainingConfig:
    """openvla-oft"""

    use_l1_regression: bool = False
    use_diffusion: bool = True
    use_discrete_tokens: bool = False

    num_diffusion_steps_train: int = 25
    diffusion_beta_start: float = 0.0001
    diffusion_beta_end: float = 0.00005

    grad_accumulation_steps: int = 1

    use_val_set: bool = False
    val_freq: int = 10_000


class DiffusionScheduler:
    
    def __init__(self, num_train_timesteps: int, beta_start: float = 0.0001, beta_end: float = 0.02):
        self.num_train_timesteps = num_train_timesteps
        self.beta_start = beta_start
        self.beta_end = beta_end
        
        self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps)
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas)
        self.alphas_cumprod_prev = jnp.concatenate([jnp.array([1.0]), self.alphas_cumprod[:-1]])
        
        self.variance = (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
        self.variance = jnp.concatenate([jnp.array([0.0]), self.variance[1:]])
        
        self.timesteps = jnp.arange(0, num_train_timesteps)
    
    def set_timesteps(self, num_inference_steps: int):
        self.num_inference_steps = num_inference_steps
        step_ratio = self.num_train_timesteps // num_inference_steps
        self.timesteps = jnp.arange(0, self.num_train_timesteps, step_ratio)
    
    def step(self, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray) -> Dict[str, jnp.ndarray]:
        # DDIM step
        alpha_cumprod = self.alphas_cumprod[timestep]
        alpha_cumprod_prev = self.alphas_cumprod_prev[timestep]
        
        # predict x_0
        pred_original_sample = (sample - jnp.sqrt(1 - alpha_cumprod) * model_output) / jnp.sqrt(alpha_cumprod)
        
        # predict x_{t-1}
        pred_sample_direction = jnp.sqrt(1 - alpha_cumprod_prev) * model_output
        prev_sample = jnp.sqrt(alpha_cumprod_prev) * pred_original_sample + pred_sample_direction
        
        return {"prev_sample": prev_sample}


class TimeEncoder(nnx.Module):
    
    def __init__(self, llm_dim: int, rngs: at.KeyArrayLike | None = None):
        super().__init__()
        self.llm_dim = llm_dim
        if rngs is None:
            rngs = jax.random.key(0)
        rngs_obj = rnglib.Rngs(params=rngs)
        self.time_embedding = nnx.Linear(1, llm_dim, rngs=rngs_obj)
        self.time_mlp = nnx.Sequential(
            nnx.Linear(llm_dim, llm_dim, rngs=rngs_obj),
            nnx.relu,
            nnx.Linear(llm_dim, llm_dim, rngs=rngs_obj),
        )
    
    def __call__(self, timesteps: jnp.ndarray) -> jnp.ndarray:
        # timesteps: (batch_size,)
        timesteps = timesteps.astype(jnp.float32)
        time_emb = self.time_embedding(timesteps[:, None])  # (batch_size, llm_dim)
        time_emb = self.time_mlp(time_emb)
        return time_emb


class DiffusionActionHead(nnx.Module):
    
    def __init__(self, input_dim: int, hidden_dim: int, action_dim: int, num_diffusion_steps: int, rngs: at.KeyArrayLike | None = None):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.action_dim = action_dim
        self.num_diffusion_steps_train = num_diffusion_steps
        
        if rngs is None:
            rngs = jax.random.key(0)
        rngs_obj = rnglib.Rngs(params=rngs)

        # noise predictor
        self.noise_predictor = nnx.Sequential(
            nnx.Linear(input_dim, hidden_dim, rngs=rngs_obj),
            nnx.relu,
            nnx.Linear(hidden_dim, hidden_dim, rngs=rngs_obj),
            nnx.relu,
            nnx.Linear(hidden_dim, action_dim, rngs=rngs_obj),
        )
        
        # time encoder
        self.time_encoder = TimeEncoder(hidden_dim, rngs=rngs)
        
        # diffusion scheduler
        self.noise_scheduler = DiffusionScheduler(num_diffusion_steps)
    
    def sample_noisy_actions(self, actions: jnp.ndarray, rng: at.KeyArrayLike) -> Dict[str, jnp.ndarray]:
        batch_size = actions.shape[0]
        
        # sample timesteps
        timesteps = jax.random.randint(rng, (batch_size,), 0, self.num_diffusion_steps_train)
        
        # generate noise
        noise = jax.random.normal(rng, actions.shape)
        
        # add noise to actions
        alpha_cumprod = self.noise_scheduler.alphas_cumprod[timesteps]
        alpha_cumprod = alpha_cumprod.reshape(-1, 1, 1)  # (batch_size, 1, 1)
        
        noisy_actions = jnp.sqrt(alpha_cumprod) * actions + jnp.sqrt(1 - alpha_cumprod) * noise
        
        # time step encoding
        diffusion_timestep_embeddings = self.time_encoder(timesteps)
        
        return {
            "noise": noise,
            "noisy_actions": noisy_actions,
            "diffusion_timestep_embeddings": diffusion_timestep_embeddings,
            "timesteps": timesteps,
        }
    
    def predict_noise(self, hidden_states: jnp.ndarray) -> jnp.ndarray: 
        return self.noise_predictor(hidden_states)


class NoisyActionProjector(nnx.Module):
    
    def __init__(self, input_dim: int, llm_dim: int, rngs: at.KeyArrayLike | None = None):
        super().__init__()
        self.llm_dim = llm_dim
        if rngs is None:
            rngs = jax.random.key(0)
        rngs_obj = rnglib.Rngs(params=rngs)
        self.projection = nnx.Linear(input_dim, llm_dim, rngs=rngs_obj)
    
    def __call__(self, noisy_actions: jnp.ndarray) -> jnp.ndarray:
        return self.projection(noisy_actions)


def init_logging():
    """Custom logging format for better readability."""
    level_mapping = {"DEBUG": "D", "INFO": "I", "WARNING": "W", "ERROR": "E", "CRITICAL": "C"}

    class CustomFormatter(logging.Formatter):
        def format(self, record):
            record.levelname = level_mapping.get(record.levelname, record.levelname)
            return super().format(record)

    formatter = CustomFormatter(
        fmt="%(asctime)s.%(msecs)03d [%(levelname)s] %(message)-80s (%(process)d:%(filename)s:%(lineno)s)",
        datefmt="%H:%M:%S",
    )

    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    logger.handlers[0].setFormatter(formatter)


def init_wandb(config: _config.TrainConfig, oft_config: OftTrainingConfig, *, resuming: bool, log_code: bool = False, enabled: bool = True):
    if not enabled:
        wandb.init(mode="disabled")
        return

    ckpt_dir = config.checkpoint_dir
    if not ckpt_dir.exists():
        raise FileNotFoundError(f"Checkpoint directory {ckpt_dir} does not exist.")
    
    if resuming:
        run_id = (ckpt_dir / "wandb_id.txt").read_text().strip()
        wandb.init(id=run_id, resume="must", project=config.project_name)
    else:
        # openvla-oft run_id
        run_id = f"{config.exp_name}+oft"
        
        # LoRA
        try:
            if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
                run_id += "+lora"
        except:
            pass
        if config.ema_decay is None:
            run_id += "+no_ema"
        
        # training mode
        if oft_config.use_l1_regression:
            run_id += "+l1_regression"
        if oft_config.use_diffusion:
            run_id += "+diffusion"
        if oft_config.use_discrete_tokens:
            run_id += "+discrete"
            
        wandb.init(
            name=run_id,
            config={
                **dataclasses.asdict(config),
                **dataclasses.asdict(oft_config)
            },
            project=config.project_name,
        )
        if wandb.run is not None:
            (ckpt_dir / "wandb_id.txt").write_text(wandb.run.id)

    if log_code and wandb.run is not None:
        wandb.run.log_code(str(epath.Path(__file__).parent.parent))


def _load_weights_and_validate(loader: _weight_loaders.WeightLoader, params_shape: at.Params) -> at.Params:
    """Loads and validates the weights. Returns a loaded subset of the weights."""
    loaded_params = loader.load(params_shape)
    at.check_pytree_equality(expected=params_shape, got=loaded_params, check_shapes=True, check_dtypes=True)

    # Remove jax.ShapeDtypeStruct from the loaded params. This makes sure that only the loaded params are returned.
    return traverse_util.unflatten_dict(
        {k: v for k, v in traverse_util.flatten_dict(loaded_params).items() if not isinstance(v, jax.ShapeDtypeStruct)}
    )


def apply_lora_to_model(model, config: _config.TrainConfig):
    # LoRA
    try:
        if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
            logging.info(f"Detected LoRA configuration: {config.model.paligemma_variant}")
            return model
    except:
        pass
    
    return model


def create_diffusion_components(config: _config.TrainConfig, oft_config: OftTrainingConfig, rng: at.KeyArrayLike):
    if not oft_config.use_diffusion:
        return None, None
    
    llm_dim = 2048  # get from model config
    action_dim = config.model.action_dim
    action_horizon = config.model.action_horizon
    
    # create diffusion action head
    diffusion_action_head = DiffusionActionHead(
        input_dim=llm_dim,
        hidden_dim=llm_dim,
        action_dim=action_dim,
        num_diffusion_steps=oft_config.num_diffusion_steps_train,
        rngs=rng
    )
    
    # create noisy action projector
    noisy_action_projector = NoisyActionProjector(
        input_dim=action_dim,  # only use action_dim
        llm_dim=llm_dim,
        rngs=rng
    )
    
    return diffusion_action_head, noisy_action_projector


def lora_mask(tree):
    def is_lora(path, v):
        return any('lora' in str(p) for p in path)
    return jax.tree_util.tree_map_with_path(lambda path, v: is_lora(path, v), tree)


@at.typecheck
def init_train_state(
    config: _config.TrainConfig,
    oft_config: OftTrainingConfig,
    init_rng: at.KeyArrayLike, 
    mesh: jax.sharding.Mesh, 
    tx,
    *, 
    resume: bool
) -> tuple[training_utils.TrainState, Any]:
    def init(rng: at.KeyArrayLike, partial_params: at.Params | None = None) -> training_utils.TrainState:
        rng, model_rng = jax.random.split(rng)
        model = config.model.create(model_rng)
        model = apply_lora_to_model(model, config)
        diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, model_rng)
        if partial_params is not None:
            graphdef, state = nnx.split(model)
            state.replace_by_pure_dict(partial_params)
            model = nnx.merge(graphdef, state)
        params = nnx.state(model)
        params = nnx_utils.state_map(params, config.freeze_filter, lambda p: p.replace(p.value.astype(jnp.bfloat16)))
        # use main tx
        return training_utils.TrainState(
            step=0,
            params=params,
            model_def=nnx.graphdef(model),
            tx=tx,
            opt_state=tx.init(params),
            ema_decay=config.ema_decay,
            ema_params=None if config.ema_decay is None else params,
        )
    train_state_shape = jax.eval_shape(init, init_rng)
    state_sharding = sharding.fsdp_sharding(train_state_shape, mesh, log=True)
    if resume:
        return train_state_shape, state_sharding
    partial_params = _load_weights_and_validate(config.weight_loader, train_state_shape.params.to_pure_dict())
    replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
    train_state = jax.jit(
        init,
        donate_argnums=(1,),
        in_shardings=replicated_sharding,
        out_shardings=state_sharding,
    )(init_rng, partial_params)
    return train_state, state_sharding

# TODO: modify L1 loss in the future
def compute_l1_loss(predicted_actions: jnp.ndarray, ground_truth_actions: jnp.ndarray) -> jnp.ndarray:
    return jnp.mean(jnp.abs(predicted_actions - ground_truth_actions))


def compute_diffusion_loss(predicted_noise: jnp.ndarray, target_noise: jnp.ndarray) -> jnp.ndarray:
    return jnp.mean((predicted_noise - target_noise) ** 2)


def run_diffusion_sampling(
    model: _model.BaseModel,
    diffusion_action_head: DiffusionActionHead,
    noisy_action_projector: NoisyActionProjector,
    observation: _model.Observation,
    actions: _model.Actions,
    rng: at.KeyArrayLike,
    oft_config: OftTrainingConfig,
) -> jnp.ndarray:
    """diffusion sampling, main model and NoisyActionProjector are involved, adapt to Pi0FAST"""
    batch_size = actions.shape[0]
    action_dim = actions.shape[-1]
    action_horizon = actions.shape[1]

    # generate random noise as starting point
    noise = jax.random.normal(rng, (batch_size, action_horizon, action_dim))

    # set diffusion scheduler
    diffusion_action_head.noise_scheduler.set_timesteps(oft_config.num_diffusion_steps_train)

    curr_noisy_actions = noise

    def diffusion_step(carry, timestep):
        curr_noisy_actions = carry
        timesteps = jnp.full((batch_size,), timestep)
        # time step embedding
        diffusion_timestep_embeddings = diffusion_action_head.time_encoder(timesteps)  # (batch, llm_dim)
        diffusion_timestep_embeddings = jnp.expand_dims(diffusion_timestep_embeddings, 1)  # (batch, 1, llm_dim)
        diffusion_timestep_embeddings = jnp.tile(diffusion_timestep_embeddings, (1, action_horizon, 1))  # (batch, action_horizon, llm_dim)

        # Pi0FAST
        if not isinstance(model, Pi0FAST):
            raise ValueError("run_diffusion_sampling only supports Pi0FAST main model!")
        obs_token_emb, input_mask, ar_mask = model.embed_inputs(observation)  # (batch, obs_seq_len, llm_dim)
        # embedding
        noisy_action_emb = noisy_action_projector(curr_noisy_actions)  # (batch, action_horizon, llm_dim)

        full_emb = jnp.concatenate([obs_token_emb, noisy_action_emb, diffusion_timestep_embeddings], axis=1)  # (batch, obs_seq_len+2*action_horizon, llm_dim)

        # mask
        full_input_mask = jnp.concatenate([input_mask, jnp.ones((batch_size, 2*action_horizon), dtype=input_mask.dtype)], axis=1)
        full_ar_mask = jnp.concatenate([ar_mask, jnp.zeros((batch_size, 2*action_horizon), dtype=ar_mask.dtype)], axis=1)
        attn_mask = make_attn_mask(full_input_mask, full_ar_mask)
        attn_mask = attn_mask[:, None, :, :]  # (batch, 1, seq_len, seq_len)

        # hidden_states
        hidden_states, _, _ = model.PaliGemma.llm(
            embedded_prefix=full_emb,
            mask=attn_mask,
            return_prelogits=True,
        )
        obs_seq_len = obs_token_emb.shape[1]

        actions_hidden_states = hidden_states[:, obs_seq_len:obs_seq_len+action_horizon, :]  # (batch, action_horizon, llm_dim)
        noise_pred = diffusion_action_head.predict_noise(actions_hidden_states)  # (batch, action_horizon, action_dim)

        prev_sample = diffusion_action_head.noise_scheduler.step(noise_pred, timestep, curr_noisy_actions)["prev_sample"]
        return prev_sample, None

    final_sample, _ = jax.lax.scan(diffusion_step, curr_noisy_actions, diffusion_action_head.noise_scheduler.timesteps)

    return final_sample


def compute_loss_with_oft_modes(
    model: _model.BaseModel, 
    rng: at.KeyArrayLike, 
    observation: _model.Observation, 
    actions: _model.Actions,
    config: _config.TrainConfig,
    oft_config: OftTrainingConfig,
    diffusion_action_head: Optional[DiffusionActionHead] = None,
    noisy_action_projector: Optional[NoisyActionProjector] = None,
    train: bool = True
) -> Tuple[jnp.ndarray, Dict[str, jnp.ndarray]]:
    """openvla-oft"""       
    
    chunked_loss = model.compute_loss(rng, observation, actions, train=train)
    base_loss = jnp.mean(chunked_loss)
    
    metrics = {"loss": base_loss}
    
    # calculate different losses based on training mode
    if oft_config.use_discrete_tokens:
        # discrete token prediction mode (default)
        metrics["discrete_loss"] = base_loss
        
    elif oft_config.use_l1_regression:
        l1_loss = base_loss  # TODO: calculate L1 loss
        metrics["l1_loss"] = l1_loss
        metrics["regression_loss"] = l1_loss
        
    elif oft_config.use_diffusion and diffusion_action_head is not None:
        # diffusion
        batch_size = actions.shape[0]
        action_horizon = actions.shape[1]
        action_dim = actions.shape[2]
        # sample noise
        noisy_dict = diffusion_action_head.sample_noisy_actions(actions, rng)
        noise = noisy_dict["noise"]  # (batch, action_horizon, action_dim)
        noisy_actions = noisy_dict["noisy_actions"]  # (batch, action_horizon, action_dim)
        diffusion_timestep_embeddings = noisy_dict["diffusion_timestep_embeddings"]  # (batch, llm_dim)
        timesteps = noisy_dict["timesteps"]
        # hidden_states
        if not isinstance(model, Pi0FAST):
            raise ValueError("diffusion loss only supports Pi0FAST main model!")
        if noisy_action_projector is None:
            raise ValueError("diffusion loss needs noisy_action_projector, should not be None")
        # noisy_action_projector
        noisy_action_emb = noisy_action_projector(noisy_actions)  # (batch, action_horizon, llm_dim)
        # diffusion_timestep_embeddings -> (batch, action_horizon, llm_dim)
        diffusion_timestep_embeddings = jnp.expand_dims(diffusion_timestep_embeddings, 1)  # (batch, 1, llm_dim)
        diffusion_timestep_embeddings = jnp.tile(diffusion_timestep_embeddings, (1, action_horizon, 1))  # (batch, action_horizon, llm_dim)
        obs_token_emb, input_mask, ar_mask = model.embed_inputs(observation)  # (batch, obs_seq_len, llm_dim)

        full_emb = jnp.concatenate([obs_token_emb, noisy_action_emb, diffusion_timestep_embeddings], axis=1)  # (batch, obs_seq_len+2*action_horizon, llm_dim)
        full_input_mask = jnp.concatenate([input_mask, jnp.ones((batch_size, 2*action_horizon), dtype=input_mask.dtype)], axis=1)
        full_ar_mask = jnp.concatenate([ar_mask, jnp.zeros((batch_size, 2*action_horizon), dtype=ar_mask.dtype)], axis=1)
        attn_mask = make_attn_mask(full_input_mask, full_ar_mask)
        attn_mask = attn_mask[:, None, :, :]  # (batch, 1, seq_len, seq_len)
        hidden_states, _, _ = model.PaliGemma.llm(
            embedded_prefix=full_emb,
            mask=attn_mask,
            return_prelogits=True,
        )
        obs_seq_len = obs_token_emb.shape[1]
        # actions_hidden_state
        actions_hidden_states = hidden_states[:, obs_seq_len:obs_seq_len+action_horizon, :]  # (batch, action_horizon, llm_dim)
        predicted_noise = diffusion_action_head.predict_noise(actions_hidden_states)  # (batch, action_horizon, action_dim)
        # loss
        diffusion_loss = jnp.mean((predicted_noise - noise) ** 2)
        metrics["diffusion_loss"] = diffusion_loss
        metrics["noise_prediction_loss"] = diffusion_loss
        base_loss = diffusion_loss
    
    # LoRA
    try:
        if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
            metrics["lora_loss"] = base_loss
            metrics["finetune_mode"] = jnp.array(1.0)  # mark as finetune mode
    except:
        pass
    
    return base_loss, metrics


@at.typecheck
def train_step(
    config: _config.TrainConfig,
    oft_config: OftTrainingConfig,
    rng: at.KeyArrayLike,
    state: training_utils.TrainState,
    batch: tuple[_model.Observation, _model.Actions],
) -> tuple[training_utils.TrainState, dict[str, at.Array]]:
    model = nnx.merge(state.model_def, state.params)
    model.train()

    train_rng = jax.random.fold_in(rng, state.step)
    observation, actions = batch

    diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, train_rng)

    # openvla-oft loss
    loss, metrics = compute_loss_with_oft_modes(
        model, train_rng, observation, actions, config, oft_config, 
        diffusion_action_head, noisy_action_projector, train=True
    )

    # Filter out frozen params.
    diff_state = nnx.DiffState(0, config.trainable_filter)
    grads = nnx.grad(lambda m, r, obs, acts: compute_loss_with_oft_modes(
        m, r, obs, acts, config, oft_config, diffusion_action_head, noisy_action_projector, train=True
    )[0])(model, train_rng, observation, actions)

    params = state.params
    #print(params)
    updates, new_opt_state = state.tx.update(grads, state.opt_state, params)
    new_params = optax.apply_updates(params, updates)

    # Update the model in place and return the new full state.
    new_state = dataclasses.replace(state, step=state.step + 1, params=new_params, opt_state=new_opt_state)
    if state.ema_decay is not None and state.ema_params is not None:
        ema_decay = state.ema_decay
        new_state = dataclasses.replace(
            new_state,
            ema_params=jax.tree.map(
                lambda old, new: ema_decay * old + (1 - ema_decay) * new, state.ema_params, new_params
            ),
        )

    # Filter out params that aren't kernels.
    kernel_params = nnx.state(
        model,
        nnx.All(
            nnx.Param,
            nnx.Not(nnx_utils.PathRegex(".*/(bias|scale|pos_embedding|input_embedding)")),
            lambda _, x: x.value.ndim > 1,
        ),
    )
    
    info = {
        **metrics,
        "grad_norm": optax.global_norm(grads),
        "param_norm": optax.global_norm(kernel_params),
    }

    # sample actions for visualization/debug
    if diffusion_action_head is not None and noisy_action_projector is not None:
        sampled_actions = run_diffusion_sampling(
            model, diffusion_action_head, noisy_action_projector, observation, actions, rng, oft_config
        )
        # only take the first batch element, avoid info too large
        info["sampled_actions"] = sampled_actions[:1]

    return new_state, info


def run_validation(
    config: _config.TrainConfig,
    oft_config: OftTrainingConfig,
    state: training_utils.TrainState,
    val_data_loader,
    mesh: jax.sharding.Mesh,
    step: int,
) -> Dict[str, float]:
    """validation"""
    if not oft_config.use_val_set:
        return {}
    
    model = nnx.merge(state.model_def, state.params)
    model.eval()
    
    val_metrics = []
    val_batches = 0
    
    for batch in val_data_loader:
        if val_batches >= 10:  # limit validation batches
            break
            
        observation, actions = batch
        
        # create diffusion components
        diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, jax.random.key(0))
        
        loss, metrics = compute_loss_with_oft_modes(
            model, jax.random.key(0), observation, actions, config, oft_config,
            diffusion_action_head, noisy_action_projector, train=False
        )
        
        val_metrics.append(metrics)
        val_batches += 1
    
    # calculate average metrics
    avg_metrics = {}
    if val_metrics:
        for key in val_metrics[0].keys():
            avg_metrics[f"val_{key}"] = jnp.mean(jnp.array([m[key] for m in val_metrics]))
    
    return avg_metrics


def main(config: _config.TrainConfig):
    init_logging()
    logging.info(f"Running on: {platform.node()}")
    logging.info(f"Using openvla-oft enhanced training script")
    logging.info(f"Config: {config.name}")

    # openvla-oft config
    oft_config = OftTrainingConfig()

    if config.batch_size % jax.device_count() != 0:
        raise ValueError(
            f"Batch size {config.batch_size} must be divisible by the number of devices {jax.device_count()}."
        )

    jax.config.update("jax_compilation_cache_dir", str(epath.Path("~/.cache/jax").expanduser()))

    rng = jax.random.key(config.seed)
    train_rng, init_rng = jax.random.split(rng)

    mesh = sharding.make_mesh(config.fsdp_devices)
    data_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec(sharding.DATA_AXIS))
    replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())

    checkpoint_manager, resuming = _checkpoints.initialize_checkpoint_dir(
        str(config.checkpoint_dir),
        keep_period=config.keep_period,
        overwrite=config.overwrite,
        resume=config.resume,
    )
    init_wandb(config, oft_config, resuming=resuming, enabled=config.wandb_enabled)

    data_loader = _data_loader.create_data_loader(
        config,
        sharding=data_sharding,
        shuffle=True,
    )
    data_iter = iter(data_loader)
    batch = next(data_iter)
    logging.info(f"Initialized data loader:\n{training_utils.array_tree_to_info(batch)}")

    # Log images from first batch to sanity check.
    images_to_log = [
        wandb.Image(np.concatenate([np.array(img[i]) for img in batch[0].images.values()], axis=1))
        for i in range(min(5, len(next(iter(batch[0].images.values())))))
    ]
    wandb.log({"camera_views": images_to_log}, step=0)

    # initialize model, get all params (only for generating mask)
    model = config.model.create(init_rng)
    model = apply_lora_to_model(model, config)
    params = nnx.state(model)
    mask = lora_mask(params)
    # add gradient clipping, clip_norm=1.0
    tx = optax.chain(
        optax.clip_by_global_norm(1.0),
        optax.masked(
            _optimizer.create_optimizer(config.optimizer, config.lr_schedule, weight_decay_mask=None),
            mask
        )
    )

    train_state, train_state_sharding = init_train_state(
        config, oft_config, init_rng, mesh, tx=tx, resume=resuming
    )
    jax.block_until_ready(train_state)
    logging.info(f"Initialized train state:\n{training_utils.array_tree_to_info(train_state.params)}")

    if resuming:
        train_state = _checkpoints.restore_state(checkpoint_manager, train_state, data_loader)

    ptrain_step = jax.jit(
        functools.partial(train_step, config, oft_config),
        in_shardings=(replicated_sharding, train_state_sharding, data_sharding),
        out_shardings=(train_state_sharding, replicated_sharding),
        donate_argnums=(1,),
    )

    start_step = int(jax.device_get(train_state.step))
    pbar = tqdm.tqdm(
        range(start_step, config.num_train_steps),
        initial=start_step,
        total=config.num_train_steps,
        dynamic_ncols=True,
    )

    infos = []
    gradient_step = 0
    
    for step in pbar:
        with sharding.set_mesh(mesh):
            train_state, info = ptrain_step(train_rng, train_state, batch)
        infos.append(info)
        
        if (step + 1) % oft_config.grad_accumulation_steps == 0:
            gradient_step += 1
            
            if gradient_step % config.log_interval == 0:
                stacked_infos = common_utils.stack_forest(infos)
                reduced_info = jax.device_get(jax.tree.map(jnp.mean, stacked_infos))
                info_str = ", ".join(f"{k}={v:.4f}" for k, v in reduced_info.items())
                pbar.write(f"Step {step}: {info_str}")
                wandb.log(reduced_info, step=step)
                infos = []
            
            # validation
            if oft_config.use_val_set and gradient_step % oft_config.val_freq == 0:
                val_metrics = run_validation(config, oft_config, train_state, data_loader, mesh, step)
                if val_metrics:
                    wandb.log(val_metrics, step=step)
                    pbar.write(f"Validation at step {step}: {val_metrics}")
        
        batch = next(data_iter)

        if (step % config.save_interval == 0 and step > start_step) or step == config.num_train_steps - 1:
            _checkpoints.save_state(checkpoint_manager, train_state, data_loader, step)

    logging.info("Waiting for checkpoint manager to finish")
    checkpoint_manager.wait_until_finished()


if __name__ == "__main__":
    main(_config.cli())