File size: 28,798 Bytes
ce5618e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
import dataclasses
import functools
import logging
import platform
from typing import Any, Optional, Dict, Tuple
import etils.epath as epath
import flax.nnx as nnx
from flax.training import common_utils
import flax.traverse_util as traverse_util
import jax
import jax.experimental
import jax.numpy as jnp
import numpy as np
import optax
import tqdm_loggable.auto as tqdm
import wandb
import numpy as np
import openpi.models.model as _model
import openpi.shared.array_typing as at
import openpi.shared.nnx_utils as nnx_utils
import openpi.training.checkpoints as _checkpoints
import openpi.training.config as _config
import openpi.training.data_loader as _data_loader
import openpi.training.optimizer as _optimizer
import openpi.training.sharding as sharding
import openpi.training.utils as training_utils
import openpi.training.weight_loaders as _weight_loaders
from flax.nnx import rnglib
from openpi.models.pi0_fast import Pi0FAST, make_attn_mask
@dataclasses.dataclass
class OftTrainingConfig:
"""openvla-oft"""
use_l1_regression: bool = False
use_diffusion: bool = True
use_discrete_tokens: bool = False
num_diffusion_steps_train: int = 25
diffusion_beta_start: float = 0.0001
diffusion_beta_end: float = 0.00005
grad_accumulation_steps: int = 1
use_val_set: bool = False
val_freq: int = 10_000
class DiffusionScheduler:
def __init__(self, num_train_timesteps: int, beta_start: float = 0.0001, beta_end: float = 0.02):
self.num_train_timesteps = num_train_timesteps
self.beta_start = beta_start
self.beta_end = beta_end
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = jnp.cumprod(self.alphas)
self.alphas_cumprod_prev = jnp.concatenate([jnp.array([1.0]), self.alphas_cumprod[:-1]])
self.variance = (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.variance = jnp.concatenate([jnp.array([0.0]), self.variance[1:]])
self.timesteps = jnp.arange(0, num_train_timesteps)
def set_timesteps(self, num_inference_steps: int):
self.num_inference_steps = num_inference_steps
step_ratio = self.num_train_timesteps // num_inference_steps
self.timesteps = jnp.arange(0, self.num_train_timesteps, step_ratio)
def step(self, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray) -> Dict[str, jnp.ndarray]:
# DDIM step
alpha_cumprod = self.alphas_cumprod[timestep]
alpha_cumprod_prev = self.alphas_cumprod_prev[timestep]
# predict x_0
pred_original_sample = (sample - jnp.sqrt(1 - alpha_cumprod) * model_output) / jnp.sqrt(alpha_cumprod)
# predict x_{t-1}
pred_sample_direction = jnp.sqrt(1 - alpha_cumprod_prev) * model_output
prev_sample = jnp.sqrt(alpha_cumprod_prev) * pred_original_sample + pred_sample_direction
return {"prev_sample": prev_sample}
class TimeEncoder(nnx.Module):
def __init__(self, llm_dim: int, rngs: at.KeyArrayLike | None = None):
super().__init__()
self.llm_dim = llm_dim
if rngs is None:
rngs = jax.random.key(0)
rngs_obj = rnglib.Rngs(params=rngs)
self.time_embedding = nnx.Linear(1, llm_dim, rngs=rngs_obj)
self.time_mlp = nnx.Sequential(
nnx.Linear(llm_dim, llm_dim, rngs=rngs_obj),
nnx.relu,
nnx.Linear(llm_dim, llm_dim, rngs=rngs_obj),
)
def __call__(self, timesteps: jnp.ndarray) -> jnp.ndarray:
# timesteps: (batch_size,)
timesteps = timesteps.astype(jnp.float32)
time_emb = self.time_embedding(timesteps[:, None]) # (batch_size, llm_dim)
time_emb = self.time_mlp(time_emb)
return time_emb
class DiffusionActionHead(nnx.Module):
def __init__(self, input_dim: int, hidden_dim: int, action_dim: int, num_diffusion_steps: int, rngs: at.KeyArrayLike | None = None):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.action_dim = action_dim
self.num_diffusion_steps_train = num_diffusion_steps
if rngs is None:
rngs = jax.random.key(0)
rngs_obj = rnglib.Rngs(params=rngs)
# noise predictor
self.noise_predictor = nnx.Sequential(
nnx.Linear(input_dim, hidden_dim, rngs=rngs_obj),
nnx.relu,
nnx.Linear(hidden_dim, hidden_dim, rngs=rngs_obj),
nnx.relu,
nnx.Linear(hidden_dim, action_dim, rngs=rngs_obj),
)
# time encoder
self.time_encoder = TimeEncoder(hidden_dim, rngs=rngs)
# diffusion scheduler
self.noise_scheduler = DiffusionScheduler(num_diffusion_steps)
def sample_noisy_actions(self, actions: jnp.ndarray, rng: at.KeyArrayLike) -> Dict[str, jnp.ndarray]:
batch_size = actions.shape[0]
# sample timesteps
timesteps = jax.random.randint(rng, (batch_size,), 0, self.num_diffusion_steps_train)
# generate noise
noise = jax.random.normal(rng, actions.shape)
# add noise to actions
alpha_cumprod = self.noise_scheduler.alphas_cumprod[timesteps]
alpha_cumprod = alpha_cumprod.reshape(-1, 1, 1) # (batch_size, 1, 1)
noisy_actions = jnp.sqrt(alpha_cumprod) * actions + jnp.sqrt(1 - alpha_cumprod) * noise
# time step encoding
diffusion_timestep_embeddings = self.time_encoder(timesteps)
return {
"noise": noise,
"noisy_actions": noisy_actions,
"diffusion_timestep_embeddings": diffusion_timestep_embeddings,
"timesteps": timesteps,
}
def predict_noise(self, hidden_states: jnp.ndarray) -> jnp.ndarray:
return self.noise_predictor(hidden_states)
class NoisyActionProjector(nnx.Module):
def __init__(self, input_dim: int, llm_dim: int, rngs: at.KeyArrayLike | None = None):
super().__init__()
self.llm_dim = llm_dim
if rngs is None:
rngs = jax.random.key(0)
rngs_obj = rnglib.Rngs(params=rngs)
self.projection = nnx.Linear(input_dim, llm_dim, rngs=rngs_obj)
def __call__(self, noisy_actions: jnp.ndarray) -> jnp.ndarray:
return self.projection(noisy_actions)
def init_logging():
"""Custom logging format for better readability."""
level_mapping = {"DEBUG": "D", "INFO": "I", "WARNING": "W", "ERROR": "E", "CRITICAL": "C"}
class CustomFormatter(logging.Formatter):
def format(self, record):
record.levelname = level_mapping.get(record.levelname, record.levelname)
return super().format(record)
formatter = CustomFormatter(
fmt="%(asctime)s.%(msecs)03d [%(levelname)s] %(message)-80s (%(process)d:%(filename)s:%(lineno)s)",
datefmt="%H:%M:%S",
)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.handlers[0].setFormatter(formatter)
def init_wandb(config: _config.TrainConfig, oft_config: OftTrainingConfig, *, resuming: bool, log_code: bool = False, enabled: bool = True):
if not enabled:
wandb.init(mode="disabled")
return
ckpt_dir = config.checkpoint_dir
if not ckpt_dir.exists():
raise FileNotFoundError(f"Checkpoint directory {ckpt_dir} does not exist.")
if resuming:
run_id = (ckpt_dir / "wandb_id.txt").read_text().strip()
wandb.init(id=run_id, resume="must", project=config.project_name)
else:
# openvla-oft run_id
run_id = f"{config.exp_name}+oft"
# LoRA
try:
if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
run_id += "+lora"
except:
pass
if config.ema_decay is None:
run_id += "+no_ema"
# training mode
if oft_config.use_l1_regression:
run_id += "+l1_regression"
if oft_config.use_diffusion:
run_id += "+diffusion"
if oft_config.use_discrete_tokens:
run_id += "+discrete"
wandb.init(
name=run_id,
config={
**dataclasses.asdict(config),
**dataclasses.asdict(oft_config)
},
project=config.project_name,
)
if wandb.run is not None:
(ckpt_dir / "wandb_id.txt").write_text(wandb.run.id)
if log_code and wandb.run is not None:
wandb.run.log_code(str(epath.Path(__file__).parent.parent))
def _load_weights_and_validate(loader: _weight_loaders.WeightLoader, params_shape: at.Params) -> at.Params:
"""Loads and validates the weights. Returns a loaded subset of the weights."""
loaded_params = loader.load(params_shape)
at.check_pytree_equality(expected=params_shape, got=loaded_params, check_shapes=True, check_dtypes=True)
# Remove jax.ShapeDtypeStruct from the loaded params. This makes sure that only the loaded params are returned.
return traverse_util.unflatten_dict(
{k: v for k, v in traverse_util.flatten_dict(loaded_params).items() if not isinstance(v, jax.ShapeDtypeStruct)}
)
def apply_lora_to_model(model, config: _config.TrainConfig):
# LoRA
try:
if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
logging.info(f"Detected LoRA configuration: {config.model.paligemma_variant}")
return model
except:
pass
return model
def create_diffusion_components(config: _config.TrainConfig, oft_config: OftTrainingConfig, rng: at.KeyArrayLike):
if not oft_config.use_diffusion:
return None, None
llm_dim = 2048 # get from model config
action_dim = config.model.action_dim
action_horizon = config.model.action_horizon
# create diffusion action head
diffusion_action_head = DiffusionActionHead(
input_dim=llm_dim,
hidden_dim=llm_dim,
action_dim=action_dim,
num_diffusion_steps=oft_config.num_diffusion_steps_train,
rngs=rng
)
# create noisy action projector
noisy_action_projector = NoisyActionProjector(
input_dim=action_dim, # only use action_dim
llm_dim=llm_dim,
rngs=rng
)
return diffusion_action_head, noisy_action_projector
def lora_mask(tree):
def is_lora(path, v):
return any('lora' in str(p) for p in path)
return jax.tree_util.tree_map_with_path(lambda path, v: is_lora(path, v), tree)
@at.typecheck
def init_train_state(
config: _config.TrainConfig,
oft_config: OftTrainingConfig,
init_rng: at.KeyArrayLike,
mesh: jax.sharding.Mesh,
tx,
*,
resume: bool
) -> tuple[training_utils.TrainState, Any]:
def init(rng: at.KeyArrayLike, partial_params: at.Params | None = None) -> training_utils.TrainState:
rng, model_rng = jax.random.split(rng)
model = config.model.create(model_rng)
model = apply_lora_to_model(model, config)
diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, model_rng)
if partial_params is not None:
graphdef, state = nnx.split(model)
state.replace_by_pure_dict(partial_params)
model = nnx.merge(graphdef, state)
params = nnx.state(model)
params = nnx_utils.state_map(params, config.freeze_filter, lambda p: p.replace(p.value.astype(jnp.bfloat16)))
# use main tx
return training_utils.TrainState(
step=0,
params=params,
model_def=nnx.graphdef(model),
tx=tx,
opt_state=tx.init(params),
ema_decay=config.ema_decay,
ema_params=None if config.ema_decay is None else params,
)
train_state_shape = jax.eval_shape(init, init_rng)
state_sharding = sharding.fsdp_sharding(train_state_shape, mesh, log=True)
if resume:
return train_state_shape, state_sharding
partial_params = _load_weights_and_validate(config.weight_loader, train_state_shape.params.to_pure_dict())
replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
train_state = jax.jit(
init,
donate_argnums=(1,),
in_shardings=replicated_sharding,
out_shardings=state_sharding,
)(init_rng, partial_params)
return train_state, state_sharding
# TODO: modify L1 loss in the future
def compute_l1_loss(predicted_actions: jnp.ndarray, ground_truth_actions: jnp.ndarray) -> jnp.ndarray:
return jnp.mean(jnp.abs(predicted_actions - ground_truth_actions))
def compute_diffusion_loss(predicted_noise: jnp.ndarray, target_noise: jnp.ndarray) -> jnp.ndarray:
return jnp.mean((predicted_noise - target_noise) ** 2)
def run_diffusion_sampling(
model: _model.BaseModel,
diffusion_action_head: DiffusionActionHead,
noisy_action_projector: NoisyActionProjector,
observation: _model.Observation,
actions: _model.Actions,
rng: at.KeyArrayLike,
oft_config: OftTrainingConfig,
) -> jnp.ndarray:
"""diffusion sampling, main model and NoisyActionProjector are involved, adapt to Pi0FAST"""
batch_size = actions.shape[0]
action_dim = actions.shape[-1]
action_horizon = actions.shape[1]
# generate random noise as starting point
noise = jax.random.normal(rng, (batch_size, action_horizon, action_dim))
# set diffusion scheduler
diffusion_action_head.noise_scheduler.set_timesteps(oft_config.num_diffusion_steps_train)
curr_noisy_actions = noise
def diffusion_step(carry, timestep):
curr_noisy_actions = carry
timesteps = jnp.full((batch_size,), timestep)
# time step embedding
diffusion_timestep_embeddings = diffusion_action_head.time_encoder(timesteps) # (batch, llm_dim)
diffusion_timestep_embeddings = jnp.expand_dims(diffusion_timestep_embeddings, 1) # (batch, 1, llm_dim)
diffusion_timestep_embeddings = jnp.tile(diffusion_timestep_embeddings, (1, action_horizon, 1)) # (batch, action_horizon, llm_dim)
# Pi0FAST
if not isinstance(model, Pi0FAST):
raise ValueError("run_diffusion_sampling only supports Pi0FAST main model!")
obs_token_emb, input_mask, ar_mask = model.embed_inputs(observation) # (batch, obs_seq_len, llm_dim)
# embedding
noisy_action_emb = noisy_action_projector(curr_noisy_actions) # (batch, action_horizon, llm_dim)
full_emb = jnp.concatenate([obs_token_emb, noisy_action_emb, diffusion_timestep_embeddings], axis=1) # (batch, obs_seq_len+2*action_horizon, llm_dim)
# mask
full_input_mask = jnp.concatenate([input_mask, jnp.ones((batch_size, 2*action_horizon), dtype=input_mask.dtype)], axis=1)
full_ar_mask = jnp.concatenate([ar_mask, jnp.zeros((batch_size, 2*action_horizon), dtype=ar_mask.dtype)], axis=1)
attn_mask = make_attn_mask(full_input_mask, full_ar_mask)
attn_mask = attn_mask[:, None, :, :] # (batch, 1, seq_len, seq_len)
# hidden_states
hidden_states, _, _ = model.PaliGemma.llm(
embedded_prefix=full_emb,
mask=attn_mask,
return_prelogits=True,
)
obs_seq_len = obs_token_emb.shape[1]
actions_hidden_states = hidden_states[:, obs_seq_len:obs_seq_len+action_horizon, :] # (batch, action_horizon, llm_dim)
noise_pred = diffusion_action_head.predict_noise(actions_hidden_states) # (batch, action_horizon, action_dim)
prev_sample = diffusion_action_head.noise_scheduler.step(noise_pred, timestep, curr_noisy_actions)["prev_sample"]
return prev_sample, None
final_sample, _ = jax.lax.scan(diffusion_step, curr_noisy_actions, diffusion_action_head.noise_scheduler.timesteps)
return final_sample
def compute_loss_with_oft_modes(
model: _model.BaseModel,
rng: at.KeyArrayLike,
observation: _model.Observation,
actions: _model.Actions,
config: _config.TrainConfig,
oft_config: OftTrainingConfig,
diffusion_action_head: Optional[DiffusionActionHead] = None,
noisy_action_projector: Optional[NoisyActionProjector] = None,
train: bool = True
) -> Tuple[jnp.ndarray, Dict[str, jnp.ndarray]]:
"""openvla-oft"""
chunked_loss = model.compute_loss(rng, observation, actions, train=train)
base_loss = jnp.mean(chunked_loss)
metrics = {"loss": base_loss}
# calculate different losses based on training mode
if oft_config.use_discrete_tokens:
# discrete token prediction mode (default)
metrics["discrete_loss"] = base_loss
elif oft_config.use_l1_regression:
l1_loss = base_loss # TODO: calculate L1 loss
metrics["l1_loss"] = l1_loss
metrics["regression_loss"] = l1_loss
elif oft_config.use_diffusion and diffusion_action_head is not None:
# diffusion
batch_size = actions.shape[0]
action_horizon = actions.shape[1]
action_dim = actions.shape[2]
# sample noise
noisy_dict = diffusion_action_head.sample_noisy_actions(actions, rng)
noise = noisy_dict["noise"] # (batch, action_horizon, action_dim)
noisy_actions = noisy_dict["noisy_actions"] # (batch, action_horizon, action_dim)
diffusion_timestep_embeddings = noisy_dict["diffusion_timestep_embeddings"] # (batch, llm_dim)
timesteps = noisy_dict["timesteps"]
# hidden_states
if not isinstance(model, Pi0FAST):
raise ValueError("diffusion loss only supports Pi0FAST main model!")
if noisy_action_projector is None:
raise ValueError("diffusion loss needs noisy_action_projector, should not be None")
# noisy_action_projector
noisy_action_emb = noisy_action_projector(noisy_actions) # (batch, action_horizon, llm_dim)
# diffusion_timestep_embeddings -> (batch, action_horizon, llm_dim)
diffusion_timestep_embeddings = jnp.expand_dims(diffusion_timestep_embeddings, 1) # (batch, 1, llm_dim)
diffusion_timestep_embeddings = jnp.tile(diffusion_timestep_embeddings, (1, action_horizon, 1)) # (batch, action_horizon, llm_dim)
obs_token_emb, input_mask, ar_mask = model.embed_inputs(observation) # (batch, obs_seq_len, llm_dim)
full_emb = jnp.concatenate([obs_token_emb, noisy_action_emb, diffusion_timestep_embeddings], axis=1) # (batch, obs_seq_len+2*action_horizon, llm_dim)
full_input_mask = jnp.concatenate([input_mask, jnp.ones((batch_size, 2*action_horizon), dtype=input_mask.dtype)], axis=1)
full_ar_mask = jnp.concatenate([ar_mask, jnp.zeros((batch_size, 2*action_horizon), dtype=ar_mask.dtype)], axis=1)
attn_mask = make_attn_mask(full_input_mask, full_ar_mask)
attn_mask = attn_mask[:, None, :, :] # (batch, 1, seq_len, seq_len)
hidden_states, _, _ = model.PaliGemma.llm(
embedded_prefix=full_emb,
mask=attn_mask,
return_prelogits=True,
)
obs_seq_len = obs_token_emb.shape[1]
# actions_hidden_state
actions_hidden_states = hidden_states[:, obs_seq_len:obs_seq_len+action_horizon, :] # (batch, action_horizon, llm_dim)
predicted_noise = diffusion_action_head.predict_noise(actions_hidden_states) # (batch, action_horizon, action_dim)
# loss
diffusion_loss = jnp.mean((predicted_noise - noise) ** 2)
metrics["diffusion_loss"] = diffusion_loss
metrics["noise_prediction_loss"] = diffusion_loss
base_loss = diffusion_loss
# LoRA
try:
if hasattr(config.model, 'paligemma_variant') and 'lora' in str(config.model.paligemma_variant):
metrics["lora_loss"] = base_loss
metrics["finetune_mode"] = jnp.array(1.0) # mark as finetune mode
except:
pass
return base_loss, metrics
@at.typecheck
def train_step(
config: _config.TrainConfig,
oft_config: OftTrainingConfig,
rng: at.KeyArrayLike,
state: training_utils.TrainState,
batch: tuple[_model.Observation, _model.Actions],
) -> tuple[training_utils.TrainState, dict[str, at.Array]]:
model = nnx.merge(state.model_def, state.params)
model.train()
train_rng = jax.random.fold_in(rng, state.step)
observation, actions = batch
diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, train_rng)
# openvla-oft loss
loss, metrics = compute_loss_with_oft_modes(
model, train_rng, observation, actions, config, oft_config,
diffusion_action_head, noisy_action_projector, train=True
)
# Filter out frozen params.
diff_state = nnx.DiffState(0, config.trainable_filter)
grads = nnx.grad(lambda m, r, obs, acts: compute_loss_with_oft_modes(
m, r, obs, acts, config, oft_config, diffusion_action_head, noisy_action_projector, train=True
)[0])(model, train_rng, observation, actions)
params = state.params
#print(params)
updates, new_opt_state = state.tx.update(grads, state.opt_state, params)
new_params = optax.apply_updates(params, updates)
# Update the model in place and return the new full state.
new_state = dataclasses.replace(state, step=state.step + 1, params=new_params, opt_state=new_opt_state)
if state.ema_decay is not None and state.ema_params is not None:
ema_decay = state.ema_decay
new_state = dataclasses.replace(
new_state,
ema_params=jax.tree.map(
lambda old, new: ema_decay * old + (1 - ema_decay) * new, state.ema_params, new_params
),
)
# Filter out params that aren't kernels.
kernel_params = nnx.state(
model,
nnx.All(
nnx.Param,
nnx.Not(nnx_utils.PathRegex(".*/(bias|scale|pos_embedding|input_embedding)")),
lambda _, x: x.value.ndim > 1,
),
)
info = {
**metrics,
"grad_norm": optax.global_norm(grads),
"param_norm": optax.global_norm(kernel_params),
}
# sample actions for visualization/debug
if diffusion_action_head is not None and noisy_action_projector is not None:
sampled_actions = run_diffusion_sampling(
model, diffusion_action_head, noisy_action_projector, observation, actions, rng, oft_config
)
# only take the first batch element, avoid info too large
info["sampled_actions"] = sampled_actions[:1]
return new_state, info
def run_validation(
config: _config.TrainConfig,
oft_config: OftTrainingConfig,
state: training_utils.TrainState,
val_data_loader,
mesh: jax.sharding.Mesh,
step: int,
) -> Dict[str, float]:
"""validation"""
if not oft_config.use_val_set:
return {}
model = nnx.merge(state.model_def, state.params)
model.eval()
val_metrics = []
val_batches = 0
for batch in val_data_loader:
if val_batches >= 10: # limit validation batches
break
observation, actions = batch
# create diffusion components
diffusion_action_head, noisy_action_projector = create_diffusion_components(config, oft_config, jax.random.key(0))
loss, metrics = compute_loss_with_oft_modes(
model, jax.random.key(0), observation, actions, config, oft_config,
diffusion_action_head, noisy_action_projector, train=False
)
val_metrics.append(metrics)
val_batches += 1
# calculate average metrics
avg_metrics = {}
if val_metrics:
for key in val_metrics[0].keys():
avg_metrics[f"val_{key}"] = jnp.mean(jnp.array([m[key] for m in val_metrics]))
return avg_metrics
def main(config: _config.TrainConfig):
init_logging()
logging.info(f"Running on: {platform.node()}")
logging.info(f"Using openvla-oft enhanced training script")
logging.info(f"Config: {config.name}")
# openvla-oft config
oft_config = OftTrainingConfig()
if config.batch_size % jax.device_count() != 0:
raise ValueError(
f"Batch size {config.batch_size} must be divisible by the number of devices {jax.device_count()}."
)
jax.config.update("jax_compilation_cache_dir", str(epath.Path("~/.cache/jax").expanduser()))
rng = jax.random.key(config.seed)
train_rng, init_rng = jax.random.split(rng)
mesh = sharding.make_mesh(config.fsdp_devices)
data_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec(sharding.DATA_AXIS))
replicated_sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
checkpoint_manager, resuming = _checkpoints.initialize_checkpoint_dir(
str(config.checkpoint_dir),
keep_period=config.keep_period,
overwrite=config.overwrite,
resume=config.resume,
)
init_wandb(config, oft_config, resuming=resuming, enabled=config.wandb_enabled)
data_loader = _data_loader.create_data_loader(
config,
sharding=data_sharding,
shuffle=True,
)
data_iter = iter(data_loader)
batch = next(data_iter)
logging.info(f"Initialized data loader:\n{training_utils.array_tree_to_info(batch)}")
# Log images from first batch to sanity check.
images_to_log = [
wandb.Image(np.concatenate([np.array(img[i]) for img in batch[0].images.values()], axis=1))
for i in range(min(5, len(next(iter(batch[0].images.values())))))
]
wandb.log({"camera_views": images_to_log}, step=0)
# initialize model, get all params (only for generating mask)
model = config.model.create(init_rng)
model = apply_lora_to_model(model, config)
params = nnx.state(model)
mask = lora_mask(params)
# add gradient clipping, clip_norm=1.0
tx = optax.chain(
optax.clip_by_global_norm(1.0),
optax.masked(
_optimizer.create_optimizer(config.optimizer, config.lr_schedule, weight_decay_mask=None),
mask
)
)
train_state, train_state_sharding = init_train_state(
config, oft_config, init_rng, mesh, tx=tx, resume=resuming
)
jax.block_until_ready(train_state)
logging.info(f"Initialized train state:\n{training_utils.array_tree_to_info(train_state.params)}")
if resuming:
train_state = _checkpoints.restore_state(checkpoint_manager, train_state, data_loader)
ptrain_step = jax.jit(
functools.partial(train_step, config, oft_config),
in_shardings=(replicated_sharding, train_state_sharding, data_sharding),
out_shardings=(train_state_sharding, replicated_sharding),
donate_argnums=(1,),
)
start_step = int(jax.device_get(train_state.step))
pbar = tqdm.tqdm(
range(start_step, config.num_train_steps),
initial=start_step,
total=config.num_train_steps,
dynamic_ncols=True,
)
infos = []
gradient_step = 0
for step in pbar:
with sharding.set_mesh(mesh):
train_state, info = ptrain_step(train_rng, train_state, batch)
infos.append(info)
if (step + 1) % oft_config.grad_accumulation_steps == 0:
gradient_step += 1
if gradient_step % config.log_interval == 0:
stacked_infos = common_utils.stack_forest(infos)
reduced_info = jax.device_get(jax.tree.map(jnp.mean, stacked_infos))
info_str = ", ".join(f"{k}={v:.4f}" for k, v in reduced_info.items())
pbar.write(f"Step {step}: {info_str}")
wandb.log(reduced_info, step=step)
infos = []
# validation
if oft_config.use_val_set and gradient_step % oft_config.val_freq == 0:
val_metrics = run_validation(config, oft_config, train_state, data_loader, mesh, step)
if val_metrics:
wandb.log(val_metrics, step=step)
pbar.write(f"Validation at step {step}: {val_metrics}")
batch = next(data_iter)
if (step % config.save_interval == 0 and step > start_step) or step == config.num_train_steps - 1:
_checkpoints.save_state(checkpoint_manager, train_state, data_loader, step)
logging.info("Waiting for checkpoint manager to finish")
checkpoint_manager.wait_until_finished()
if __name__ == "__main__":
main(_config.cli())
|