| 
							 | 
						from lcm_pipeline import LatentConsistencyModelPipeline | 
					
					
						
						| 
							 | 
						from lcm_scheduler import LCMScheduler | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers import AutoencoderKL, UNet2DConditionModel | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
					
						
						| 
							 | 
						from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						from safetensors.torch import load_file | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						save_path = "./lcm_images" | 
					
					
						
						| 
							 | 
						os.makedirs(save_path, exist_ok=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_id = "digiplay/DreamShaper_7" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") | 
					
					
						
						| 
							 | 
						text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder") | 
					
					
						
						| 
							 | 
						tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer") | 
					
					
						
						| 
							 | 
						unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", device_map=None, low_cpu_mem_usage=False, local_files_only=True) | 
					
					
						
						| 
							 | 
						safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker") | 
					
					
						
						| 
							 | 
						feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors" | 
					
					
						
						| 
							 | 
						ckpt = load_file(lcm_unet_ckpt) | 
					
					
						
						| 
							 | 
						m, u = unet.load_state_dict(ckpt, strict=False) | 
					
					
						
						| 
							 | 
						if len(m) > 0: | 
					
					
						
						| 
							 | 
						    print("missing keys:") | 
					
					
						
						| 
							 | 
						    print(m) | 
					
					
						
						| 
							 | 
						if len(u) > 0: | 
					
					
						
						| 
							 | 
						    print("unexpected keys:") | 
					
					
						
						| 
							 | 
						    print(u) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) | 
					
					
						
						| 
							 | 
						pipe = pipe.to("cuda") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						images = pipe(prompt=prompt, num_images_per_prompt=4, num_inference_steps=4, guidance_scale=8.0, lcm_origin_steps=50).images | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						for i in tqdm(range(len(images))): | 
					
					
						
						| 
							 | 
						    output_path = os.path.join(save_path, "{}.png".format(i)) | 
					
					
						
						| 
							 | 
						    image = images[i] | 
					
					
						
						| 
							 | 
						    image.save(output_path)  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |