| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" Arctic model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from dataclasses import asdict, dataclass | 
					
					
						
						| 
							 | 
						from typing import Any, Dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = { | 
					
					
						
						| 
							 | 
						    "arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class ArcticLoraConfig: | 
					
					
						
						| 
							 | 
						    lora_r: int = 64 | 
					
					
						
						| 
							 | 
						    lora_alpha: float = 16 | 
					
					
						
						| 
							 | 
						    shard_base_weights: bool = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class ArcticQuantizationConfig: | 
					
					
						
						| 
							 | 
						    q_bits: int = 8 | 
					
					
						
						| 
							 | 
						    rounding: str = "nearest" | 
					
					
						
						| 
							 | 
						    mantissa_bits: int = 3 | 
					
					
						
						| 
							 | 
						    group_size: int = 512 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ArcticConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an | 
					
					
						
						| 
							 | 
						    Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
					
						
						| 
							 | 
						    with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config.. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 32000): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`ArcticModel`] | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Dimension of the hidden representations. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 14336): | 
					
					
						
						| 
							 | 
						            Dimension of the MLP representations. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*, defaults to 8): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details checkout [this | 
					
					
						
						| 
							 | 
						            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | 
					
					
						
						| 
							 | 
						        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. Arctic's sliding window attention | 
					
					
						
						| 
							 | 
						            allows sequence of up to 4096*32 tokens. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        rms_norm_eps (`float`, *optional*, defaults to 1e-05): | 
					
					
						
						| 
							 | 
						            The epsilon used by the rms normalization layers. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if `config.is_decoder=True`. | 
					
					
						
						| 
							 | 
						        pad_token_id (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            The id of the padding token. | 
					
					
						
						| 
							 | 
						        bos_token_id (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            The id of the "beginning-of-sequence" token. | 
					
					
						
						| 
							 | 
						        eos_token_id (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            The id of the "end-of-sequence" token. | 
					
					
						
						| 
							 | 
						        tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether the model's input and output word embeddings should be tied. | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 1000000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        sliding_window (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Sliding window attention window size. If not specified, will default to `4096`. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						        num_experts_per_tok (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            The number of experts to root per-token, can be also interpreted as the `top-p` routing | 
					
					
						
						| 
							 | 
						            parameter | 
					
					
						
						| 
							 | 
						        num_local_experts (`int`, *optional*, defaults to 8): | 
					
					
						
						| 
							 | 
						            Number of experts per Sparse MLP layer. | 
					
					
						
						| 
							 | 
						        router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | 
					
					
						
						| 
							 | 
						            The aux loss factor for the total loss. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import ArcticModel, ArcticConfig | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to. | 
					
					
						
						| 
							 | 
						    >>> configuration = ArcticConfig() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from the Arctic 7B style configuration | 
					
					
						
						| 
							 | 
						    >>> model = ArcticModel(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "arctic" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=32000, | 
					
					
						
						| 
							 | 
						        hidden_size=4096, | 
					
					
						
						| 
							 | 
						        intermediate_size=14336, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=32, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=None, | 
					
					
						
						| 
							 | 
						        hidden_act="silu", | 
					
					
						
						| 
							 | 
						        max_position_embeddings=4096, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        rms_norm_eps=1e-5, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        pad_token_id=None, | 
					
					
						
						| 
							 | 
						        bos_token_id=1, | 
					
					
						
						| 
							 | 
						        eos_token_id=2, | 
					
					
						
						| 
							 | 
						        tie_word_embeddings=False, | 
					
					
						
						| 
							 | 
						        rope_theta=1e6, | 
					
					
						
						| 
							 | 
						        sliding_window=None, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        num_experts_per_tok=1, | 
					
					
						
						| 
							 | 
						        num_local_experts=8, | 
					
					
						
						| 
							 | 
						        router_aux_loss_coef=0.001, | 
					
					
						
						| 
							 | 
						        moe_layer_frequency=2, | 
					
					
						
						| 
							 | 
						        parallel_attn_mlp_res=False, | 
					
					
						
						| 
							 | 
						        moe_train_capacity_factor=1, | 
					
					
						
						| 
							 | 
						        moe_eval_capacity_factor=1, | 
					
					
						
						| 
							 | 
						        enable_expert_tensor_parallelism=False, | 
					
					
						
						| 
							 | 
						        moe_min_capacity=0, | 
					
					
						
						| 
							 | 
						        moe_token_dropping=True, | 
					
					
						
						| 
							 | 
						        quantization=None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.sliding_window = sliding_window | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_key_value_heads is None: | 
					
					
						
						| 
							 | 
						            num_key_value_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.hidden_act = hidden_act | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.rms_norm_eps = rms_norm_eps | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.num_local_experts = num_local_experts | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_coef = router_aux_loss_coef | 
					
					
						
						| 
							 | 
						        self.moe_layer_frequency = moe_layer_frequency | 
					
					
						
						| 
							 | 
						        self.moe_train_capacity_factor = moe_train_capacity_factor | 
					
					
						
						| 
							 | 
						        self.moe_eval_capacity_factor = moe_eval_capacity_factor | 
					
					
						
						| 
							 | 
						        self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism | 
					
					
						
						| 
							 | 
						        self.moe_min_capacity = moe_min_capacity | 
					
					
						
						| 
							 | 
						        self.moe_token_dropping = moe_token_dropping | 
					
					
						
						| 
							 | 
						        self.parallel_attn_mlp_res = parallel_attn_mlp_res | 
					
					
						
						| 
							 | 
						        if isinstance(quantization, dict): | 
					
					
						
						| 
							 | 
						            self.quantization = ArcticQuantizationConfig(**quantization) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.quantization = quantization | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            pad_token_id=pad_token_id, | 
					
					
						
						| 
							 | 
						            bos_token_id=bos_token_id, | 
					
					
						
						| 
							 | 
						            eos_token_id=eos_token_id, | 
					
					
						
						| 
							 | 
						            tie_word_embeddings=tie_word_embeddings, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @classmethod | 
					
					
						
						| 
							 | 
						    def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig": | 
					
					
						
						| 
							 | 
						        result = super().from_dict(config_dict, **kwargs) | 
					
					
						
						| 
							 | 
						        if isinstance(result, tuple): | 
					
					
						
						| 
							 | 
						            config = result[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            config = result | 
					
					
						
						| 
							 | 
						        if isinstance(config.quantization, dict): | 
					
					
						
						| 
							 | 
						            config.quantization = ArcticQuantizationConfig(**config.quantization) | 
					
					
						
						| 
							 | 
						        return result | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def to_dict(self) -> Dict[str, Any]: | 
					
					
						
						| 
							 | 
						        ret = super().to_dict() | 
					
					
						
						| 
							 | 
						        if isinstance(ret["quantization"], ArcticQuantizationConfig): | 
					
					
						
						| 
							 | 
						            ret["quantization"] = asdict(ret["quantization"]) | 
					
					
						
						| 
							 | 
						        return ret | 
					
					
						
						| 
							 | 
						
 |