--- base_model: - Qwen/Qwen2.5-VL-7B-Instruct language: - en license: apache-2.0 pipeline_tag: video-text-to-text tags: - multimodal library_name: transformers --- # TimeSearch-R-7B - **Code:** https://github.com/Time-Search/TimeSearch-R - **Paper:** [TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning](https://arxiv.org/abs/2511.05489) ## Usage We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/Time-Search/TimeSearch-R). ```python import numpy as np import torch from longvu.builder import load_pretrained_model from longvu.constants import ( DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, ) from longvu.conversation import conv_templates, SeparatorStyle from longvu.mm_datautils import ( KeywordsStoppingCriteria, process_images, tokenizer_image_token, ) from decord import cpu, VideoReader tokenizer, model, image_processor, context_len = load_pretrained_model( "./checkpoints/longvu_qwen", None, "cambrian_qwen", ) model.eval() video_path = "./examples/video1.mp4" qs = "Describe this video in detail" vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) fps = float(vr.get_avg_fps()) frame_indices = np.array([i for i in range(0, len(vr), round(fps),)]) video = [] for frame_index in frame_indices: img = vr[frame_index].asnumpy() video.append(img) video = np.stack(video) image_sizes = [video[0].shape[:2]] video = process_images(video, image_processor, model.config) video = [item.unsqueeze(0) for item in video] qs = DEFAULT_IMAGE_TOKEN + " " + qs conv = conv_templates["qwen"].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=video, image_sizes=image_sizes, do_sample=False, temperature=0.2, max_new_tokens=128, use_cache=True, stopping_criteria=[stopping_criteria], ) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() ``` ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{timesearch-r, title={TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning}, author={Pan, Junwen and Zhang, Qizhe and Zhang, Rui and Lu, Ming and Wan, Xin and Zhang, Yuan and Liu, Chang and She, Qi}, journal={arXiv preprint arXiv:2511.05489}, year={2025} } ```