--- base_model: - Qwen/Qwen2.5-VL-7B-Instruct license: apache-2.0 tags: - vision-language - cinematography - shotbench pipeline_tag: image-text-to-text library_name: transformers --- ## Model description This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), introduced in the paper [ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models](https://huggingface.co/papers/2506.21356). It is trained on the largest and high-quality dataset for cinematic language understanding to date. It currently achieves state-of-the-art performance on [ShotBench](https://vchitect.github.io/ShotBench-project/), a comprehensive benchmark for evaluating cinematography understanding in vision-language models. **Project Page:** [https://vchitect.github.io/ShotBench-project/](https://vchitect.github.io/ShotBench-project/) **Code:** [https://github.com/Vchitect/ShotBench](https://github.com/Vchitect/ShotBench) ### Demo **Image** ```python import cv2 import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info device = "cuda" device_map = "balanced" dtype = torch.bfloat16 image_path = "/path/to/image.jpg" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Vchitect/ShotVL-7B", device_map=device_map, attn_implementation="flash_attention_2", torch_dtype=dtype, ).eval() processor = AutoProcessor.from_pretrained( "Vchitect/ShotVL-7B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype ) msgs = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ {"type": "image", "image": image_path}, {"type": "text", "text": "What's the shot size of this shot?"}, ], }, ] text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(msgs) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(device) with torch.inference_mode(): out_ids = model.generate(**inputs, max_new_tokens=640) trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)] print(processor.batch_decode(trimmed, skip_special_tokens=True)[0]) ``` **Video** ```python import cv2 import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info device = "cuda" device_map = "balanced" dtype = torch.bfloat16 video_path = "/path/to/video.mp4" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Vchitect/ShotVL-7B", device_map=device_map, attn_implementation="flash_attention_2", torch_dtype=dtype, ).eval() processor = AutoProcessor.from_pretrained( "Vchitect/ShotVL-7B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype ) question = ( "What's the camera movement in this movie shot? " "Options: A. Boom down B. Boom up C. Push in D. Pull out " "Please select the most likely answer from the options above. " ) msgs = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ {"type": "video", "video": video_path, "max_pixels": 360*640, "fps": 12.0}, {"type": "text", "text": question}, ], }, ] text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(msgs) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(device) with torch.inference_mode(): out_ids = model.generate(**inputs, max_new_tokens=640) trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)] print(processor.batch_decode(trimmed, skip_special_tokens=True)[0]) ``` ## Evaluation Results
Abbreviations:  SS = Shot Size,  SF = Shot Framing,  CA = Camera Angle,  LS = Lens Size,  LT = Lighting Type,  LC = Lighting Conditions,  SC = Shot Composition,  CM = Camera MovementUnderline marks previous best in each group.
Our ShotVL models establish new SOTA.
ModelsSSSFCALSLT LCSCCMAvg
Open-Sourced VLMs
Qwen2.5-VL-3B-Instruct54.656.643.136.659.345.141.531.946.1
Qwen2.5-VL-7B-Instruct69.173.553.247.060.547.449.930.253.8
LLaVA-NeXT-Video-7B35.937.132.527.850.931.728.031.334.4
LLaVA-Video-7B-Qwen256.965.445.136.063.545.437.435.348.1
LLaVA-Onevision-Qwen2-7B-Ov-Chat58.471.052.338.759.544.950.939.751.9
InternVL2.5-8B56.370.350.841.160.245.150.133.650.9
InternVL3-2B56.356.044.434.656.844.643.038.146.7
InternVL3-8B62.165.846.842.958.044.346.844.251.4
InternVL3-14B59.682.255.440.761.744.651.138.254.2
Internlm-xcomposer2d5-7B51.171.039.832.759.335.735.738.845.5
Ovis2-8B35.937.132.527.850.931.728.035.334.9
VILA1.5-3B33.444.932.128.650.635.728.421.534.4
VILA1.5-8B40.644.539.129.748.932.934.436.938.4
VILA1.5-13B36.754.640.734.852.835.434.231.340.1
Instructblip-vicuna-7B27.027.934.529.444.429.727.125.030.6
Instructblip-vicuna-13B26.829.227.928.039.024.027.122.028.0
InternVL2.5-38B67.885.455.441.761.748.952.444.057.2
InternVL3-38B68.084.051.943.664.446.954.744.657.3
Qwen2.5-VL-32B-Instruct62.376.651.048.361.744.052.243.855.0
Qwen2.5-VL-72B-Instruct75.182.956.746.859.049.454.148.959.1
InternVL3-78B69.780.054.544.065.547.451.844.457.2
Proprietary VLMs
Gemini-2.0-flash48.975.544.631.962.248.952.447.451.5
Gemini-2.5-flash-preview-04-1757.782.951.443.865.245.745.943.554.5
GPT-4o69.383.158.248.963.248.055.248.359.3
Ours
ShotVL-3B HF 77.985.668.859.365.7 53.157.451.765.1
ShotVL-7B HF 81.290.178.068.570.1 64.345.762.970.1
## BibTeX ``` @misc{ liu2025shotbench, title={ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models}, author={Hongbo Liu and Jingwen He and Yi Jin and Dian Zheng and Yuhao Dong and Fan Zhang and Ziqi Huang and Yinan He and Yangguang Li and Weichao Chen and Yu Qiao and Wanli Ouyang and Shengjie Zhao and Ziwei Liu}, year={2025}, eprint={2506.21356}, achivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.21356}, } ```