Update README.md
Browse files
README.md
CHANGED
|
@@ -8,14 +8,14 @@ base_model:
|
|
| 8 |
---
|
| 9 |
# WebOrganizer/FormatClassifier
|
| 10 |
|
| 11 |
-
[[Paper](
|
| 12 |
|
| 13 |
The FormatClassifier organizes web content into 24 categories based on the URL and text contents of web pages.
|
| 14 |
The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) with 140M parameters fine-tuned on the following training data:
|
| 15 |
1. [WebOrganizer/FormatAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/FormatAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
|
| 16 |
2. [WebOrganizer/FormatAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/FormatAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
|
| 17 |
|
| 18 |
-
|
| 19 |
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier) *← you are here!*
|
| 20 |
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL)
|
| 21 |
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier)
|
|
@@ -80,7 +80,7 @@ You can convert the `logits` of the model with a softmax to obtain a probability
|
|
| 80 |
|
| 81 |
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/formats.yaml).
|
| 82 |
|
| 83 |
-
|
| 84 |
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ (see more [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers)) and loading the model like:
|
| 85 |
```python
|
| 86 |
AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
| 8 |
---
|
| 9 |
# WebOrganizer/FormatClassifier
|
| 10 |
|
| 11 |
+
[[Paper](https://arxiv.org/abs/2502.10341)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)]
|
| 12 |
|
| 13 |
The FormatClassifier organizes web content into 24 categories based on the URL and text contents of web pages.
|
| 14 |
The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) with 140M parameters fine-tuned on the following training data:
|
| 15 |
1. [WebOrganizer/FormatAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/FormatAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
|
| 16 |
2. [WebOrganizer/FormatAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/FormatAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
|
| 17 |
|
| 18 |
+
#### All Domain Classifiers
|
| 19 |
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier) *← you are here!*
|
| 20 |
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL)
|
| 21 |
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier)
|
|
|
|
| 80 |
|
| 81 |
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/formats.yaml).
|
| 82 |
|
| 83 |
+
#### Efficient Inference
|
| 84 |
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ (see more [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers)) and loading the model like:
|
| 85 |
```python
|
| 86 |
AutoModelForSequenceClassification.from_pretrained(
|