--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B language: en datasets: - Word2Li/MiddOptimized tags: - llama-factory - full pipeline_tag: text-generation model-index: - name: Llama3.1-8B-Middo-Alpaca-4o-mini results: - task: type: text-generation dataset: name: MMLU type: MMLU metrics: - name: weighted accuarcy type: weighted accuarcy value: 44.69 verified: true - task: type: text-generation dataset: name: IFEval type: IFEval metrics: - name: overall accuarcy type: overall accuarcy value: 47.96 verified: true - task: type: text-generation dataset: name: GSM8K type: GSM8K metrics: - name: accuarcy type: accuarcy value: 57.62 verified: true - task: type: text-generation dataset: name: MATH type: MATH metrics: - name: accuarcy type: accuarcy value: 18.50 verified: true - task: type: text-generation dataset: name: HumanEval type: HumanEval metrics: - name: humaneval_pass@1 type: humaneval_pass@1 value: 52.44 verified: true - task: type: text-generation dataset: name: MBPP type: MBPP metrics: - name: score type: score value: 45.40 verified: true - task: type: text-generation dataset: name: Hellaswag type: Hellaswag metrics: - name: accuarcy type: accuarcy value: 57.37 verified: true - task: type: text-generation dataset: name: GPQA type: GPQA metrics: - name: accuarcy type: accuarcy value: 19.70 verified: true metrics: - accuracy --- # Llama3.1-8B-Middo-Alpaca-4o-mini Paper: [Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning](https://arxiv.org/abs/2508.21589) Code: https://github.com/Word2VecT/Middo ## Model description This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the [MiddOptimzed/llama_alpaca_4o_mini](https://huggingface.co/datasets/Word2Li/MiddOptimized/viewer/default/llama_alpaca_4o_mini) dataset. ## Training and evaluation data ### Training data Middo optimized [Word2Li/Alpaca-4o-mini](https://huggingface.co/datasets/Word2Li/Alpaca-4o-mini) on [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B). ### Evaluation data - General - MMLU - IFEval - Math - GSM8K - MATH - Code - HumanEval - MBPP - Reasoning - Hellaswag - GPQA ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results - epoch: 0.9964556962025316 - total_flos: 2.1359726465573192e + 18 - train_loss: 0.9420681825982846 - train_runtime: 3147.8466 - train_samples_per_second: 20.072 - train_steps_per_second: 0.078 ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1