--- library_name: transformers base_model: UBC-NLP/MARBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: UBC-NLP-MARBERT-arabic-fp16-allagree-cameltools results: [] --- # UBC-NLP-MARBERT-arabic-fp16-allagree-cameltools This model is a fine-tuned version of [UBC-NLP/MARBERT](https://huggingface.co/UBC-NLP/MARBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2191 - Accuracy: 0.9384 - Precision: 0.9385 - Recall: 0.9384 - F1: 0.9384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9917 | 0.7463 | 50 | 0.6973 | 0.7668 | 0.8138 | 0.7668 | 0.6876 | | 0.3936 | 1.4925 | 100 | 0.2191 | 0.9384 | 0.9385 | 0.9384 | 0.9384 | | 0.1789 | 2.2388 | 150 | 0.1868 | 0.9450 | 0.9448 | 0.9450 | 0.9448 | | 0.1503 | 2.9851 | 200 | 0.2098 | 0.9291 | 0.9323 | 0.9291 | 0.9296 | | 0.0871 | 3.7313 | 250 | 0.2069 | 0.9431 | 0.9435 | 0.9431 | 0.9433 | | 0.0484 | 4.4776 | 300 | 0.2293 | 0.9506 | 0.9506 | 0.9506 | 0.9506 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1