File size: 30,163 Bytes
ec7f7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import os
import sys
this_dir = os.path.dirname(__file__)
mmcv_pkg_root = os.path.join(os.path.dirname(this_dir), "mmcv")
if os.path.exists(mmcv_pkg_root):
print(f"please make sure you have mmcv package successfully installed in local mmcv folder {mmcv_pkg_root}")
print(f">>> [check] sys.path before mmcv insert = {sys.path}")
print(f">>> [check] mmcv_pkg_root = {mmcv_pkg_root}")
if mmcv_pkg_root in sys.path:
sys.path.remove(mmcv_pkg_root)
sys.path.insert(0, mmcv_pkg_root)
print(f">>> [check] sys.path after mmcv insert = {sys.path}")
else:
print(f">>> [check] mmcv_pkg_root not exists: {mmcv_pkg_root}")
print(f"please make sure you have mmcv package successfully installed by 'pip install mmcv' or 'mim install mmcv'")
import mmcv
print(">>> [check] mmcv __file__ =", getattr(mmcv, "__file__", None))
print(">>> [check] mmcv __version__ =", getattr(mmcv, "__version__", None))
assert mmcv.__version__ >= "2.0.0" and mmcv.__version__ < "2.2.0", "mmcv version must be >=2.0.0 and <2.2.0"
import numpy as np
import argparse
import torch
import copy
import cv2
import os
import moviepy.video.io.ImageSequenceClip
from pose.script.dwpose import DWposeDetector, draw_pose
from pose.script.util import size_calculate, warpAffine_kps
from utils_aug import pose_aug_diff
'''
Detect dwpose from img, then align it by scale parameters
img: frame from the pose video
detector: DWpose
scales: scale parameters
'''
def align_img(img, pose_ori, scales, detect_resolution, image_resolution):
body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
hands = copy.deepcopy(pose_ori['hands'])
faces = copy.deepcopy(pose_ori['faces'])
'''
计算逻辑:
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
H_in, W_in, C_in = img.shape
video_ratio = W_in / H_in
body_pose[:, 0] = body_pose[:, 0] * video_ratio
hands[:, :, 0] = hands[:, :, 0] * video_ratio
faces[:, :, 0] = faces[:, :, 0] * video_ratio
# scales of 10 body parts
scale_neck = scales["scale_neck"]
# scale_face = scales["scale_face"]
scale_face_left = scales["scale_face_left"]
scale_face_right = scales["scale_face_right"]
scale_shoulder = scales["scale_shoulder"]
scale_arm_upper = scales["scale_arm_upper"]
scale_arm_lower = scales["scale_arm_lower"]
scale_hand = scales["scale_hand"]
scale_body_len = scales["scale_body_len"]
scale_leg_upper = scales["scale_leg_upper"]
scale_leg_lower = scales["scale_leg_lower"]
scale_sum = 0
count = 0
# scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, scale_body_len, scale_leg_upper, scale_leg_lower]
scale_list = [scale_neck, scale_face_left, scale_face_right, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, scale_body_len, scale_leg_upper, scale_leg_lower]
for i in range(len(scale_list)):
if not np.isinf(scale_list[i]):
scale_sum = scale_sum + scale_list[i]
count = count + 1
for i in range(len(scale_list)):
if np.isinf(scale_list[i]):
scale_list[i] = scale_sum/count
# offsets of each part
offset = dict()
# offset["14_15_16_17_to_0"] = body_pose[[14,15,16,17], :] - body_pose[[0], :]
offset["14_16_to_0"] = body_pose[[14,16], :] - body_pose[[0], :]
offset["15_17_to_0"] = body_pose[[15,17], :] - body_pose[[0], :]
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]
# neck
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_neck)
neck = body_pose[[0], :]
neck = warpAffine_kps(neck, M)
body_pose[[0], :] = neck
# # body_pose_up_shoulder
# c_ = body_pose[0]
# cx = c_[0]
# cy = c_[1]
# M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face)
# body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
# body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
# body_pose[[14,15,16,17], :] = body_pose_up_shoulder
# body_pose_up_shoulder left
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face_left)
body_pose_up_shoulder = offset["14_16_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[14,16], :] = body_pose_up_shoulder
# body_pose_up_shoulder right
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face_right)
body_pose_up_shoulder = offset["15_17_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[15,17], :] = body_pose_up_shoulder
# shoulder
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_shoulder)
body_pose_shoulder = body_pose[[2,5], :]
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
body_pose[[2,5], :] = body_pose_shoulder
# arm upper left
c_ = body_pose[2]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["3_to_2"] + body_pose[[2], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[3], :] = elbow
# arm lower left
c_ = body_pose[3]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["4_to_3"] + body_pose[[3], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[4], :] = wrist
# hand left
c_ = body_pose[4]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_left_to_4"] + body_pose[[4], :]
hand = warpAffine_kps(hand, M)
hands[1, :, :] = hand
# arm upper right
c_ = body_pose[5]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["6_to_5"] + body_pose[[5], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[6], :] = elbow
# arm lower right
c_ = body_pose[6]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["7_to_6"] + body_pose[[6], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[7], :] = wrist
# hand right
c_ = body_pose[7]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_right_to_7"] + body_pose[[7], :]
hand = warpAffine_kps(hand, M)
hands[0, :, :] = hand
# body len
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_body_len)
body_len = body_pose[[8,11], :]
body_len = warpAffine_kps(body_len, M)
body_pose[[8,11], :] = body_len
# leg upper left
c_ = body_pose[8]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["9_to_8"] + body_pose[[8], :]
knee = warpAffine_kps(knee, M)
body_pose[[9], :] = knee
# leg lower left
c_ = body_pose[9]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["10_to_9"] + body_pose[[9], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[10], :] = ankle
# leg upper right
c_ = body_pose[11]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["12_to_11"] + body_pose[[11], :]
knee = warpAffine_kps(knee, M)
body_pose[[12], :] = knee
# leg lower right
c_ = body_pose[12]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["13_to_12"] + body_pose[[12], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[13], :] = ankle
# none part
body_pose_none = pose_ori['bodies']['candidate'] == -1.
hands_none = pose_ori['hands'] == -1.
faces_none = pose_ori['faces'] == -1.
body_pose[body_pose_none] = -1.
hands[hands_none] = -1.
nan = float('nan')
if len(hands[np.isnan(hands)]) > 0:
print('nan')
faces[faces_none] = -1.
# last check nan -> -1.
body_pose = np.nan_to_num(body_pose, nan=-1.)
hands = np.nan_to_num(hands, nan=-1.)
faces = np.nan_to_num(faces, nan=-1.)
# return
pose_align = copy.deepcopy(pose_ori)
pose_align['bodies']['candidate'] = body_pose
pose_align['hands'] = hands
pose_align['faces'] = faces
return pose_align
def run_align_video_with_filterPose_translate_smooth(args):
vidfn=args.vidfn
imgfn_refer=args.imgfn_refer
outfn=args.outfn
video = cv2.VideoCapture(vidfn)
width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
fps= video.get(cv2.CAP_PROP_FPS)
print("height:", height)
print("width:", width)
print("fps:", fps)
H_in, W_in = height, width
H_out, W_out = size_calculate(H_in,W_in,args.detect_resolution)
H_out, W_out = size_calculate(H_out,W_out,args.image_resolution)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
detector = DWposeDetector(
det_config = args.yolox_config,
det_ckpt = args.yolox_ckpt,
pose_config = args.dwpose_config,
pose_ckpt = args.dwpose_ckpt,
keypoints_only=False
)
detector = detector.to(device)
#### refer_img 的精确处理 在前边直接处理完毕,就不需要考虑后续 pose 的二次处理 ####
refer_img = cv2.imread(imgfn_refer)
ref_height, ref_width, channels = refer_img.shape
# print("ref_height: ", ref_height)
# print("ref_width: ", ref_width)
aspect_ratio = ref_height / ref_width
# max_area = "832*480"
max_area = "1024*576"
# max_area = "1664*960"
lat_h = round(
np.sqrt(int(eval(max_area)) * aspect_ratio) // 16)
lat_w = round(
np.sqrt(int(eval(max_area)) / aspect_ratio) // 16)
new_height = lat_h * 16
new_width = lat_w * 16
# print("new_height:", new_height)
# print("new_width:", new_width)
# resize_height = int(ref_height*(1.0 * new_height/ref_height))
# resize_width = int(ref_width*(1.0 * new_width/ref_width))
# resize_height = new_height * 2
# resize_width = new_width * 2
resize_height = new_height
resize_width = new_width
# print("resize_height:", resize_height)
# print("resize_width:", resize_width)
refer_img = cv2.resize(refer_img, (resize_width, resize_height), interpolation=cv2.INTER_CUBIC)
ref_height, ref_width, channels = refer_img.shape
output_refer, pose_refer = detector(refer_img,detect_resolution=args.detect_resolution, image_resolution=args.image_resolution, output_type='cv2',return_pose_dict=True)
body_ref_img = pose_refer['bodies']['candidate']
hands_ref_img = pose_refer['hands']
faces_ref_img = pose_refer['faces']
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)
skip_frames = args.align_frame
max_frame = args.max_frame
pose_list, video_frame_buffer, video_pose_buffer = [], [], []
cap = cv2.VideoCapture('2.mp4') # 读取视频
while cap.isOpened(): # 当视频被打开时:
ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
if ret: # 若是读取成功
cv2.imshow('frame', frame) # 显示读取到的这一帧画面
key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入
if key == ord('q'): # 若是键盘输入'q',则退出,释放视频
cap.release() # 释放视频
break
else:
cap.release()
cv2.destroyAllWindows() # 关闭所有窗口
for i in range(max_frame):
ret, img = video.read()
if img is None:
break
else:
if i < skip_frames:
continue
video_frame_buffer.append(img)
# estimate scale parameters by the 1st frame in the video
if i==skip_frames:
output_1st_img, pose_1st_img = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
body_1st_img = pose_1st_img['bodies']['candidate']
hands_1st_img = pose_1st_img['hands']
faces_1st_img = pose_1st_img['faces']
'''
计算逻辑:
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
ref_ratio = ref_W / ref_H
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio
video_ratio = width / height
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio
# scale
align_args = dict()
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106
align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st
# dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
# dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
# align_args["scale_face"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[14]) + np.linalg.norm(body_1st_img[14]-body_1st_img[0])
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[14]) + np.linalg.norm(body_ref_img[14]-body_ref_img[0])
align_args["scale_face_left"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[17]-body_1st_img[15]) + np.linalg.norm(body_1st_img[15]-body_1st_img[0])
dist_ref_img = np.linalg.norm(body_ref_img[17]-body_ref_img[15]) + np.linalg.norm(body_ref_img[15]-body_ref_img[0])
align_args["scale_face_right"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_lower"] = (s1+s2)/2
# hand
dist_1st_img = np.zeros(10)
dist_ref_img = np.zeros(10)
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])
ratio = 0
count = 0
total_iters = 0 # 10
for i in range (total_iters):
if dist_1st_img[i] != 0:
ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
count = count + 1
if count!=0:
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
else:
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2
# body
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
align_args["scale_body_len"]=dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_upper"] = (s1+s2)/2
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_lower"] = (s1+s2)/2
####################
####################
# need adjust nan
for k,v in align_args.items():
if np.isnan(v):
align_args[k]=1
# centre offset (the offset of key point 1)
offset = body_ref_img[1] - body_1st_img[1]
# pose align
pose_img, pose_ori = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
video_pose_buffer.append(pose_img)
pose_align = align_img(img, pose_ori, align_args, args.detect_resolution, args.image_resolution)
# add centre offset
pose = pose_align
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
pose['hands'] = pose['hands'] + offset
pose['faces'] = pose['faces'] + offset
# h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
pose_list.append(pose)
# stack
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list]
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
hands_list = [pose['hands'][:2] for pose in pose_list]
faces_list = [pose['faces'][:1] for pose in pose_list]
body_seq = np.stack(body_list , axis=0)
body_seq_subset = np.stack(body_list_subset, axis=0)
hands_seq = np.stack(hands_list , axis=0)
faces_seq = np.stack(faces_list , axis=0)
# concatenate and paint results
# H = 768 # paint height
H = ref_H # paint height
W1 = int((H/ref_H * ref_W)//2 *2)
W2 = int((H/height * width)//2 *2)
result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
result_pose_aug_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video[:-4] + "_aug" + ".mp4", fps)
offset_x=(-0.2,0.2)
offset_y=(-0.2,0.2)
scale=(0.7,1.3)
aspect_ratio_range=(0.6, 1.4)
offset = (offset_x, offset_y)
for i in range(len(body_seq)):
pose_t={}
pose_t["bodies"]={}
pose_t["bodies"]["candidate"]=body_seq[i]
pose_t["bodies"]["subset"]=body_seq_subset[i]
pose_t["hands"]=hands_seq[i]
pose_t["faces"]=faces_seq[i]
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
ref_img = cv2.resize(ref_img, (W1, H))
ref_pose= cv2.resize(output_refer, (W1, H))
# output_transformed = draw_pose(
# pose_t,
# int(H_in*1024/W_in),
# 1024,
# draw_face=False,
# )
# output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
# output_transformed = cv2.resize(output_transformed, (W1, H))
output_transformed = draw_pose( # single.mp4
pose_t,
ref_H*2,
ref_W*2,
draw_face=False,
)
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
# output_transformed = cv2.resize(output_transformed, (W1, H), interpolation=cv2.INTER_CUBIC)
output_transformed_1 = draw_pose( # all.mp4
pose_t,
ref_H,
ref_W,
draw_face=False,
)
output_transformed_1 = cv2.cvtColor(output_transformed_1, cv2.COLOR_BGR2RGB)
# output_transformed_1 = cv2.resize(output_transformed_1, (W1, H), interpolation=cv2.INTER_CUBIC)
pose_t_aug = pose_aug_diff(pose_t.copy(), size=(ref_H, ref_W), offset=offset, scale=scale, aspect_ratio_range=aspect_ratio_range, add_aug=True)
output_transformed_aug = draw_pose( # single_aug.mp4
pose_t_aug,
ref_H*2,
ref_W*2,
draw_face=False,
)
output_transformed_aug = cv2.cvtColor(output_transformed_aug, cv2.COLOR_BGR2RGB)
# output_transformed_aug = cv2.resize(output_transformed_aug, (W1, H), interpolation=cv2.INTER_CUBIC)
output_transformed_aug_1 = draw_pose( # all.mp4
pose_t_aug,
ref_H,
ref_W,
draw_face=False,
)
output_transformed_aug_1 = cv2.cvtColor(output_transformed_aug_1, cv2.COLOR_BGR2RGB)
# output_transformed_aug_1 = cv2.resize(output_transformed_aug_1, (W1, H), interpolation=cv2.INTER_CUBIC)
video_frame = cv2.resize(video_frame_buffer[i], (W2, H), interpolation=cv2.INTER_CUBIC)
video_frame = cv2.cvtColor(video_frame, cv2.COLOR_BGR2RGB)
video_pose = cv2.resize(video_pose_buffer[i], (W2, H), interpolation=cv2.INTER_CUBIC)
if (4*W1 + 2*W2) <= 16384:
res = np.concatenate([ref_img, ref_pose, output_transformed_1, output_transformed_aug_1, video_frame, video_pose], axis=1)
else:
res = np.concatenate([ref_img, ref_pose, output_transformed_1, output_transformed_aug_1, video_frame], axis=1)
result_demo.append(res) # all.mp4
result_pose_only.append(output_transformed) # single.mp4
result_pose_aug_only.append(output_transformed_aug) # single_aug.mp4
print(f"pose_list len: {len(pose_list)}")
result_demo = [frame.astype('uint8') for frame in result_demo]
result_pose_only = [frame.astype('uint8') for frame in result_pose_only]
result_pose_aug_only = [frame.astype('uint8') for frame in result_pose_aug_only]
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
clip.write_videofile(outfn, fps=fps, codec="libx264", audio=False, logger=None) # all.mp4
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
clip.write_videofile(args.outfn_align_pose_video, fps=fps, codec="libx264", audio=False, logger=None) # single.mp4
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_aug_only, fps=fps)
clip.write_videofile(args.outfn_align_pose_video[:-4] + "_aug" + ".mp4", fps=fps, codec="libx264", audio=False, logger=None) # single_aug.mp4
print('pose align done')
def main():
parser = argparse.ArgumentParser()
# parser.add_argument('--detect_resolution', type=int, default=512, help='detect_resolution')
# parser.add_argument('--image_resolution', type=int, default=720, help='image_resolution')
parser.add_argument('--detect_resolution', type=int, default=1024, help='detect_resolution')
parser.add_argument('--image_resolution', type=int, default=720, help='image_resolution')
parser.add_argument("--yolox_config", type=str, default=f"{this_dir}/pose/config/yolox_l_8xb8-300e_coco.py")
parser.add_argument("--dwpose_config", type=str, default=f"{this_dir}/pose/config/dwpose-l_384x288.py")
parser.add_argument("--yolox_ckpt", type=str, default=f"{this_dir}/pretrained_weights/dwpose/yolox_l_8x8_300e_coco.pth")
parser.add_argument("--dwpose_ckpt", type=str, default=f"{this_dir}/pretrained_weights/dwpose/dw-ll_ucoco_384.pth")
parser.add_argument('--align_frame', type=int, default=0, help='the frame index of the video to align')
parser.add_argument('--max_frame', type=int, default=300, help='maximum frame number of the video to align')
parser.add_argument('--imgfn_refer', type=str, default="./assets/images/0.jpg", help='refer image path')
parser.add_argument('--vidfn', type=str, default="./assets/videos/0.mp4", help='Input video path')
parser.add_argument('--outfn_align_pose_video', type=str, default=None, help='output path of the aligned video of the refer img')
parser.add_argument('--outfn', type=str, default=None, help='Output path of the alignment visualization')
args = parser.parse_args()
# if not os.path.exists("./assets/poses/align"):
# # os.makedirs("./assets/poses/")
# os.makedirs("./assets/poses/align")
# os.makedirs("./assets/poses/align_demo")
img_name = os.path.basename(args.imgfn_refer).split('.')[0]
video_name = os.path.basename(args.vidfn).split('.')[0]
if args.outfn_align_pose_video is None:
args.outfn_align_pose_video = "./assets/poses/align/img_{}_video_{}.mp4".format(img_name, video_name)
if args.outfn is None:
args.outfn = "./assets/poses/align_demo/img_{}_video_{}.mp4".format(img_name, video_name)
os.makedirs(os.path.dirname(args.outfn), exist_ok=True)
os.makedirs(os.path.dirname(args.outfn_align_pose_video), exist_ok=True)
run_align_video_with_filterPose_translate_smooth(args)
if __name__ == '__main__':
main()
|