|
|
import importlib
|
|
|
import os
|
|
|
import os.path as osp
|
|
|
import shutil
|
|
|
import sys
|
|
|
from pathlib import Path
|
|
|
|
|
|
import av
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
import torchvision
|
|
|
from einops import rearrange
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
def seed_everything(seed):
|
|
|
import random
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
torch.manual_seed(seed)
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
np.random.seed(seed % (2**32))
|
|
|
random.seed(seed)
|
|
|
|
|
|
|
|
|
def import_filename(filename):
|
|
|
spec = importlib.util.spec_from_file_location("mymodule", filename)
|
|
|
module = importlib.util.module_from_spec(spec)
|
|
|
sys.modules[spec.name] = module
|
|
|
spec.loader.exec_module(module)
|
|
|
return module
|
|
|
|
|
|
|
|
|
def delete_additional_ckpt(base_path, num_keep):
|
|
|
dirs = []
|
|
|
for d in os.listdir(base_path):
|
|
|
if d.startswith("checkpoint-"):
|
|
|
dirs.append(d)
|
|
|
num_tot = len(dirs)
|
|
|
if num_tot <= num_keep:
|
|
|
return
|
|
|
|
|
|
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
|
|
|
for d in del_dirs:
|
|
|
path_to_dir = osp.join(base_path, d)
|
|
|
if osp.exists(path_to_dir):
|
|
|
shutil.rmtree(path_to_dir)
|
|
|
|
|
|
|
|
|
def save_videos_from_pil(pil_images, path, fps):
|
|
|
|
|
|
save_fmt = Path(path).suffix
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
|
width, height = pil_images[0].size
|
|
|
|
|
|
if save_fmt == ".mp4":
|
|
|
codec = "libx264"
|
|
|
container = av.open(path, "w")
|
|
|
stream = container.add_stream(codec, rate=fps)
|
|
|
|
|
|
stream.width = width
|
|
|
stream.height = height
|
|
|
stream.pix_fmt = 'yuv420p'
|
|
|
stream.bit_rate = 10000000
|
|
|
stream.options["crf"] = "18"
|
|
|
|
|
|
for pil_image in pil_images:
|
|
|
|
|
|
av_frame = av.VideoFrame.from_image(pil_image)
|
|
|
container.mux(stream.encode(av_frame))
|
|
|
container.mux(stream.encode())
|
|
|
container.close()
|
|
|
|
|
|
elif save_fmt == ".gif":
|
|
|
pil_images[0].save(
|
|
|
fp=path,
|
|
|
format="GIF",
|
|
|
append_images=pil_images[1:],
|
|
|
save_all=True,
|
|
|
duration=(1 / fps * 1000),
|
|
|
loop=0,
|
|
|
)
|
|
|
else:
|
|
|
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
|
|
|
|
|
|
|
|
|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
|
|
|
videos = rearrange(videos, "b c t h w -> t b c h w")
|
|
|
height, width = videos.shape[-2:]
|
|
|
outputs = []
|
|
|
|
|
|
for x in videos:
|
|
|
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
|
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
|
|
if rescale:
|
|
|
x = (x + 1.0) / 2.0
|
|
|
x = (x * 255).numpy().astype(np.uint8)
|
|
|
x = Image.fromarray(x)
|
|
|
|
|
|
outputs.append(x)
|
|
|
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
|
|
|
|
save_videos_from_pil(outputs, path, fps)
|
|
|
|
|
|
|
|
|
def read_frames(video_path):
|
|
|
container = av.open(video_path)
|
|
|
|
|
|
video_stream = next(s for s in container.streams if s.type == "video")
|
|
|
frames = []
|
|
|
for packet in container.demux(video_stream):
|
|
|
for frame in packet.decode():
|
|
|
image = Image.frombytes(
|
|
|
"RGB",
|
|
|
(frame.width, frame.height),
|
|
|
frame.to_rgb().to_ndarray(),
|
|
|
)
|
|
|
frames.append(image)
|
|
|
|
|
|
return frames
|
|
|
|
|
|
|
|
|
def get_fps(video_path):
|
|
|
container = av.open(video_path)
|
|
|
video_stream = next(s for s in container.streams if s.type == "video")
|
|
|
fps = video_stream.average_rate
|
|
|
container.close()
|
|
|
return fps
|
|
|
|