File size: 12,658 Bytes
			
			| 2da8312 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | """
MolmoAct configuration
"""
from typing import Tuple, Optional, Dict, Any
from transformers import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class MolmoActVitConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MolmoActVisionTransformer`].
    It is used to instantiate a `MolmoActVisionTransformer` according to the specified arguments,
    defining the model architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Example:
    ```python
    >>> from transformers import MolmoActVitConfig, MolmoActVisionTransformer
    >>> # Initializing a MolmoActVitConfig
    >>> configuration = MolmoActVitConfig()
    >>> # Initializing a MolmoActVisionTransformer (with random weights)
    >>> model = MolmoActVisionTransformer(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "molmoact_vit"
    def __init__(
        self,
        hidden_size: int = 1152,
        intermediate_size: int = 4304,
        num_hidden_layers: int = 27,
        num_attention_heads: int = 16,
        num_key_value_heads: int = 16,
        head_dim: int = 72,
        hidden_act: str = "gelu_pytorch_tanh",
        layer_norm_eps: float = 1e-6,
        image_default_input_size: Tuple[int, int] = (378, 378),
        image_patch_size: int = 14,
        image_num_pos: int = 577,
        attention_dropout: float = 0.0,
        residual_dropout: float = 0.0,
        initializer_range: float = 0.02,
        float32_attention: bool = True,
        use_cls_token: bool = False,      # True for OpenCLIP
        patch_bias: bool = True,          # False for OpenCLIP
        pre_layernorm: bool = False,      # True for OpenCLIP
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.layer_norm_eps = layer_norm_eps
        self.image_default_input_size = image_default_input_size
        self.image_patch_size = image_patch_size
        self.image_num_pos = image_num_pos
        self.attention_dropout = attention_dropout
        self.residual_dropout = residual_dropout
        self.initializer_range = initializer_range
        self.float32_attention = float32_attention
        self.use_cls_token = use_cls_token
        self.patch_bias = patch_bias
        self.pre_layernorm = pre_layernorm
    @property
    def image_num_patch(self):
        h, w = self.image_default_input_size
        return h // self.image_patch_size, w // self.image_patch_size
class MolmoActAdapterConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of MolmoActAdapter. With MolmoActVitConfig,
    It is used to instantiate an MolmoActVisionBackbone according to the specified arguments,
    defining the model architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Example:
    ```python
    >>> from transformers import MolmoActVitConfig, MolmoActAdapterConfig, MolmoActVisionBackbone
    >>> # Initializing a MolmoActVitConfig and a MolmoActAdapterConfig
    >>> vit_config = MolmoActVitConfig()
    >>> adapter_config = MolmoPoolingConfig()
    >>> # Initializing a MolmoActVisionBackbone (with random weights)
    >>> model = MolmoActVisionBackbone(vit_config, adapter_config)
    >>> # Accessing the model configuration
    >>> vit_configuration = model.vit_config
    >>> adapter_configuration = model.adapter_config
    ```"""
    def __init__(
        self,
        vit_layers: Tuple = (-3, -9),
        hidden_size: int = 1152,
        num_attention_heads: int = 16,
        num_key_value_heads: int = 16,
        head_dim: int = 72,
        float32_attention: bool = True,
        attention_dropout: float = 0.0,
        residual_dropout: float = 0.0,
        hidden_act: str = "silu",
        intermediate_size: int = 18944,
        text_hidden_size: int = 3584,
        image_feature_dropout: float = 0.0,
        initializer_range: float = 0.02,
        # pooling_mode: str = "indices",            # "indices" (SigLIP) or "2x2_attention" (OpenCLIP)
        image_padding_embed: Optional[str] = None,  # e.g. "pad_and_partial_pad"
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.vit_layers = vit_layers
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.float32_attention = float32_attention
        self.attention_dropout = attention_dropout
        self.residual_dropout = residual_dropout
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.text_hidden_size = text_hidden_size
        self.image_feature_dropout = image_feature_dropout
        self.initializer_range = initializer_range
        # self.pooling_mode = pooling_mode
        self.image_padding_embed = image_padding_embed
class MolmoActLlmConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MolmoActLlm`]. It is used to instantiate a
    `MolmoActLlm` according to the specified arguments, defining the model architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Example:
    ```python
    >>> from transformers import MolmoActLlmConfig, MolmoActLlm
    >>> # Initializing a MolmoActLlmConfig
    >>> configuration = MolmoActLlmConfig()
    >>> # Initializing a MolmoActLlm (with random weights)
    >>> model = MolmoActLlm(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "molmoact_llm"
    keys_to_ignore_at_inference = ["past_key_values"]
    base_model_tp_plan = {
        "blocks.*.self_attn.att_proj": "colwise",
        "blocks.*.self_attn.attn_out": "rowwise",
        "blocks.*.mlp.ff_proj": "colwise",
        "blocks.*.mlp.ff_out": "rowwise",
    }
    base_model_pp_plan = {
        "wte": (["input_ids"], ["inputs_embeds"]),
        "blocks": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "ln_f": (["hidden_states"], ["hidden_states"]),
    }
    def __init__(
        self,
        hidden_size: int = 3584,
        num_attention_heads: int = 28,
        num_key_value_heads: Optional[int] = 4,
        head_dim: int = 128,
        vocab_size: int = 152064,
        additional_vocab_size: int = 128,
        qkv_bias: bool = True,
        num_hidden_layers: int = 48,
        intermediate_size: int = 18944,
        hidden_act: str = "silu",
        embedding_dropout: float=0.0,
        attention_dropout: float=0.0,
        residual_dropout: float = 0.0,
        max_position_embeddings: int = 4096,
        rope_theta: float = 1000000.0,
        rope_scaling: Dict[str, Any] = None,
        use_qk_norm: bool = False,
        qk_norm_type: str = "olmo",
        layer_norm_eps: int = 1e-6,
        norm_after: bool = False,
        initializer_range: float = 0.02,
        use_cache=True,
        tie_word_embeddings=False,
        **kwargs,
    ):
        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs
        )
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.vocab_size = vocab_size
        self.additional_vocab_size = additional_vocab_size
        self.qkv_bias = qkv_bias
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.embedding_dropout = embedding_dropout
        self.attention_dropout = attention_dropout
        self.residual_dropout = residual_dropout
        self.max_position_embeddings = max_position_embeddings
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.use_qk_norm = use_qk_norm
        self.qk_norm_type = qk_norm_type
        self.layer_norm_eps = layer_norm_eps
        self.norm_after = norm_after
        self.initializer_range = initializer_range
        self.use_cache = use_cache
        # Validate the correctness of rotary position embeddings parameters
        rope_config_validation(self)
class MolmoActConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MolmoActForActionReasoning`].
    It is used to instantiate an MolmoAct model according to the specified arguments, defining the model architecture.
    Example:
    ```python
    >>> from transformers import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig
    >>> # Initializing a MolmoActVitConfig
    >>> vit_config = MolmoActVitConfig()
    >>> # Initializing a MolmoActAdapterConfig
    >>> adapter_config = MolmoActAdapterConfig()
    >>> # Initializing a MolmoActLlmConfig
    >>> llm_config = MolmoActLlmConfig()
    >>> # Initializing a MolmoActConfig
    >>> configuration = MolmoActConfig(vit_config, adapter_config, llm_config, image_patch_id=152069)
    >>> # Initializing a model
    >>> model = MolmoActForActionReasoning(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "molmoact"
    sub_configs = {
        "llm_config": MolmoActLlmConfig,
        "vit_config": MolmoActVitConfig,
        "adapter_config": MolmoActAdapterConfig,
    }
    def __init__(
        self,
        vit_config: MolmoActVitConfig = None,
        adapter_config: MolmoActAdapterConfig = None,
        llm_config: MolmoActLlmConfig = None,
        image_patch_id: int = None,
        initializer_range: float = 0.02,
        n_action_bins: int = 256,
        norm_stats: dict = {},
        **kwargs,
    ):
        super().__init__(**kwargs)
        if vit_config is None:
            self.vit_config = MolmoActVitConfig()
        elif isinstance(vit_config, dict):
            self.vit_config = MolmoActVitConfig(**vit_config)
        else:
            self.vit_config = vit_config
        if adapter_config is None:
            self.adapter_config = MolmoActAdapterConfig()
        elif isinstance(adapter_config, dict):
            self.adapter_config = MolmoActAdapterConfig(**adapter_config)
        else:
            self.adapter_config = adapter_config
        if llm_config is None:
            self.llm_config = MolmoActLlmConfig()
        elif isinstance(llm_config, dict):
            self.llm_config = MolmoActLlmConfig(**llm_config)
        else:
            self.llm_config = llm_config
        self.image_patch_id = image_patch_id
        self.initializer_range = initializer_range
        self.n_action_bins = n_action_bins
        self.norm_stats = norm_stats
    @property
    def image_num_patch(self):
        assert self.vit_config is not None
        return self.vit_config.image_num_patch
    
    @property
    def num_attention_heads(self):
        return self.llm_config.num_attention_heads
    
    @property
    def num_key_value_heads(self):
        return self.llm_config.num_key_value_heads
    @property
    def head_dim(self):
        return self.llm_config.head_dim
    @property
    def num_hidden_layers(self):
        return self.llm_config.num_hidden_layers
    
    @property
    def hidden_size(self):
        return self.llm_config.hidden_size
    
    @property
    def vocab_size(self):
        return self.llm_config.vocab_size
    
    @property
    def max_position_embeddings(self):
        return self.llm_config.max_position_embeddings
MolmoActVitConfig.register_for_auto_class()
MolmoActAdapterConfig.register_for_auto_class()
MolmoActLlmConfig.register_for_auto_class()
MolmoActConfig.register_for_auto_class() | 
