|  | """Image processor class for MolmoAct""" | 
					
						
						|  | from typing import TYPE_CHECKING, Tuple, List, Optional, Union, Dict, Any | 
					
						
						|  | import numpy as np | 
					
						
						|  | import einops | 
					
						
						|  | import torch | 
					
						
						|  | import torchvision.transforms | 
					
						
						|  | from torchvision.transforms import InterpolationMode | 
					
						
						|  | from torchvision.transforms.functional import convert_image_dtype | 
					
						
						|  |  | 
					
						
						|  | from transformers.image_utils import ( | 
					
						
						|  | OPENAI_CLIP_MEAN, | 
					
						
						|  | OPENAI_CLIP_STD, | 
					
						
						|  | ChannelDimension, | 
					
						
						|  | ImageInput, | 
					
						
						|  | is_valid_image, | 
					
						
						|  | valid_images, | 
					
						
						|  | to_numpy_array, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.image_transforms import convert_to_rgb, to_channel_dimension_format | 
					
						
						|  | from transformers.processing_utils import ImagesKwargs | 
					
						
						|  | from transformers.image_processing_utils import BaseImageProcessor | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from transformers.feature_extraction_utils import BatchFeature | 
					
						
						|  | from transformers.utils import TensorType, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  | from transformers.utils import TensorType, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_multi_image(image: Union[ImageInput, List[ImageInput]]) -> bool: | 
					
						
						|  | return isinstance(image, (list, tuple)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_batched_images(images) -> List[ImageInput]: | 
					
						
						|  | """ | 
					
						
						|  | Accepts images in list or nested list format. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): | 
					
						
						|  | The input image. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | list: A list of images or a list of lists of images. | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): | 
					
						
						|  | return images | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): | 
					
						
						|  | return images | 
					
						
						|  |  | 
					
						
						|  | elif is_valid_image(images): | 
					
						
						|  | return [images] | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"Could not make batched images from {images}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def normalize_image(image: np.ndarray, normalize_mode: str) -> np.ndarray: | 
					
						
						|  | if normalize_mode == "openai": | 
					
						
						|  | image -= np.array(OPENAI_CLIP_MEAN, dtype=np.float32)[None, None, :] | 
					
						
						|  | image /= np.array(OPENAI_CLIP_STD, dtype=np.float32)[None, None, :] | 
					
						
						|  | elif normalize_mode == "siglip": | 
					
						
						|  | image = np.asarray(-1.0, dtype=np.float32) + image * np.asarray(2.0, dtype=np.float32) | 
					
						
						|  | elif normalize_mode == "dino": | 
					
						
						|  | image -= np.array([0.485, 0.456, 0.406], dtype=np.float32)[None, None, :] | 
					
						
						|  | image /= np.array([0.229, 0.224, 0.225], dtype=np.float32)[None, None, :] | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(normalize_mode) | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _ensure_pyint_size2(size): | 
					
						
						|  | """ | 
					
						
						|  | Ensure `size` is a 2-tuple of built-in Python ints. | 
					
						
						|  | Accepts int, list/tuple, or numpy array of length 1 or 2. | 
					
						
						|  | """ | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | if isinstance(size, (list, tuple, np.ndarray)): | 
					
						
						|  | if len(size) == 2: | 
					
						
						|  | return (int(size[0]), int(size[1])) | 
					
						
						|  | elif len(size) == 1: | 
					
						
						|  | s = int(size[0]) | 
					
						
						|  | return (s, s) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | s = int(size[0]) | 
					
						
						|  | return (s, s) | 
					
						
						|  |  | 
					
						
						|  | s = int(size) | 
					
						
						|  | return (s, s) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def resize_and_pad( | 
					
						
						|  | image, | 
					
						
						|  | desired_output_size, | 
					
						
						|  | resize_method="torch-bilinear", | 
					
						
						|  | pad_value=0, | 
					
						
						|  | ): | 
					
						
						|  | """Resize an image while padding to preserve uts aspect ratio.""" | 
					
						
						|  | desired_output_size = _ensure_pyint_size2(desired_output_size) | 
					
						
						|  | desired_height, desired_width = desired_output_size | 
					
						
						|  | height, width = image.shape[:2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32) | 
					
						
						|  | image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32) | 
					
						
						|  | image_scale = min(image_scale_x, image_scale_y) | 
					
						
						|  | scaled_height = int(np.array(height, np.float32) * image_scale) | 
					
						
						|  | scaled_width = int(np.array(width, np.float32) * image_scale) | 
					
						
						|  |  | 
					
						
						|  | if resize_method in ["torch-bilinear"]: | 
					
						
						|  | image = torch.permute(torch.from_numpy(image), [2, 0, 1]) | 
					
						
						|  | image = convert_image_dtype(image) | 
					
						
						|  | mode = InterpolationMode.BILINEAR | 
					
						
						|  | image = torchvision.transforms.Resize([scaled_height, scaled_width], mode, antialias=True)(image) | 
					
						
						|  | image = torch.clip(image, 0.0, 1.0) | 
					
						
						|  | image = torch.permute(image, [1, 2, 0]).numpy() | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(resize_method) | 
					
						
						|  |  | 
					
						
						|  | top_pad = (desired_height - scaled_height) // 2 | 
					
						
						|  | left_pad = (desired_width - scaled_width) // 2 | 
					
						
						|  | padding = [ | 
					
						
						|  | [top_pad, desired_height - scaled_height - top_pad], | 
					
						
						|  | [left_pad, desired_width - scaled_width - left_pad], | 
					
						
						|  | [0, 0] | 
					
						
						|  | ] | 
					
						
						|  | image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2]) | 
					
						
						|  | image = np.pad(image, padding, constant_values=pad_value) | 
					
						
						|  | return image, image_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def metaclip_resize(image, desired_output_size): | 
					
						
						|  | desired_output_size = _ensure_pyint_size2(desired_output_size) | 
					
						
						|  | image = torch.permute(torch.from_numpy(image), [2, 0, 1]) | 
					
						
						|  | if torch.is_floating_point(image): | 
					
						
						|  | image = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image) | 
					
						
						|  | image = torch.clip(image, 0.0, 1.0) | 
					
						
						|  | else: | 
					
						
						|  | assert image.dtype == torch.uint8, "Expected float images or uint8 images, but got {}".format(image.dtype) | 
					
						
						|  | image = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image) | 
					
						
						|  | image = image.to(torch.float32) | 
					
						
						|  | image = torch.clip(image, 0, 255) | 
					
						
						|  | image = image / 255.0 | 
					
						
						|  | resized = torch.permute(image, [1, 2, 0]).numpy() | 
					
						
						|  | image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) | 
					
						
						|  | return resized, image_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def siglip_resize_and_pad( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | desired_output_size: Tuple[int, int], | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray]: | 
					
						
						|  | desired_output_size = _ensure_pyint_size2(desired_output_size) | 
					
						
						|  |  | 
					
						
						|  | image = torch.permute(torch.from_numpy(image), [2, 0, 1]) | 
					
						
						|  | dtype = image.dtype | 
					
						
						|  | if torch.is_floating_point(image): | 
					
						
						|  | in_min = 0.0 | 
					
						
						|  | in_max = 1.0 | 
					
						
						|  | resized = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, | 
					
						
						|  | InterpolationMode.BILINEAR, | 
					
						
						|  | antialias=False, | 
					
						
						|  | )(image) | 
					
						
						|  | resized = torch.clip(resized, 0.0, 1.0).to(dtype) | 
					
						
						|  | else: | 
					
						
						|  | assert image.dtype == torch.uint8, "SigLIP expects float images or uint8 images, but got {}".format(image.dtype) | 
					
						
						|  | in_min = 0.0 | 
					
						
						|  | in_max = 255.0 | 
					
						
						|  | resized = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, | 
					
						
						|  | InterpolationMode.BILINEAR, | 
					
						
						|  | antialias=False, | 
					
						
						|  | )(image) | 
					
						
						|  | resized = torch.clip(resized, 0, 255).to(dtype) | 
					
						
						|  |  | 
					
						
						|  | resized = resized.to(torch.float32) | 
					
						
						|  | resized = (resized - in_min) / (in_max - in_min) | 
					
						
						|  |  | 
					
						
						|  | resized = torch.permute(resized, [1, 2, 0]).numpy() | 
					
						
						|  | image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) | 
					
						
						|  |  | 
					
						
						|  | return resized, image_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dino_resize_and_pad( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | desired_output_size: Tuple[int, int], | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray]: | 
					
						
						|  | desired_output_size = _ensure_pyint_size2(desired_output_size) | 
					
						
						|  | image = torch.permute(torch.from_numpy(image), [2, 0, 1]) | 
					
						
						|  | dtype = image.dtype | 
					
						
						|  | if torch.is_floating_point(image): | 
					
						
						|  | resized = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, | 
					
						
						|  | InterpolationMode.BICUBIC, | 
					
						
						|  | antialias=True, | 
					
						
						|  | )(image) | 
					
						
						|  | resized = torch.clip(resized, 0.0, 1.0).to(torch.float32) | 
					
						
						|  | else: | 
					
						
						|  | assert image.dtype == torch.uint8, "DINOv2 expects float images or uint8 images, but got {}".format(image.dtype) | 
					
						
						|  | resized = torchvision.transforms.Resize( | 
					
						
						|  | desired_output_size, | 
					
						
						|  | InterpolationMode.BICUBIC, | 
					
						
						|  | antialias=True, | 
					
						
						|  | )(image) | 
					
						
						|  | resized = torch.clip(resized, 0, 255).to(torch.float32) | 
					
						
						|  | resized = resized / 255.0 | 
					
						
						|  |  | 
					
						
						|  | resized = torch.permute(resized, [1, 2, 0]).numpy() | 
					
						
						|  | image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) | 
					
						
						|  |  | 
					
						
						|  | return resized, image_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def resize_image( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | resize_mode: str, | 
					
						
						|  | output_size: Tuple[int, int], | 
					
						
						|  | pad_value: float, | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray]: | 
					
						
						|  | if resize_mode == "siglip": | 
					
						
						|  | return siglip_resize_and_pad(image, output_size) | 
					
						
						|  | elif resize_mode == "dino": | 
					
						
						|  | return dino_resize_and_pad(image, output_size) | 
					
						
						|  | elif resize_mode == "metaclip": | 
					
						
						|  | return metaclip_resize(image, output_size) | 
					
						
						|  | else: | 
					
						
						|  | resize = "torch-bilinear" if resize_mode == "default" else resize_mode | 
					
						
						|  | return resize_and_pad( | 
					
						
						|  | image, output_size, resize_method=resize, pad_value=pad_value, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def select_tiling(h, w, patch_size, max_num_crops): | 
					
						
						|  | """Divide in image of size [w, h] in up to max_num_patches of size patch_size""" | 
					
						
						|  | original_size = np.stack([h, w]) | 
					
						
						|  | original_res = h * w | 
					
						
						|  | tilings = [] | 
					
						
						|  | for i in range(1, max_num_crops + 1): | 
					
						
						|  | for j in range(1, max_num_crops + 1): | 
					
						
						|  | if i*j <= max_num_crops: | 
					
						
						|  | tilings.append((i, j)) | 
					
						
						|  |  | 
					
						
						|  | tilings.sort(key=lambda x: (x[0]*x[1], x[0])) | 
					
						
						|  | candidate_tilings = np.array(tilings, dtype=np.int32) | 
					
						
						|  | candidate_resolutions = candidate_tilings * patch_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | original_size = np.stack([h, w], dtype=np.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with np.errstate(divide='ignore'): | 
					
						
						|  | required_scale_d = candidate_resolutions.astype(np.float32) / original_size, | 
					
						
						|  | required_scale = np.min(required_scale_d, axis=-1, keepdims=True) | 
					
						
						|  | if np.all(required_scale < 1): | 
					
						
						|  |  | 
					
						
						|  | ix = np.argmax(required_scale) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | required_scale = np.where(required_scale < 1.0, 10e9, required_scale) | 
					
						
						|  | ix = np.argmin(required_scale) | 
					
						
						|  | return candidate_tilings[ix] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_resized_image( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | resize_mode: str, | 
					
						
						|  | normalized_mode: str, | 
					
						
						|  | base_image_input_size: List[int], | 
					
						
						|  | pad_value: float, | 
					
						
						|  | image_patch_size: int, | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | 
					
						
						|  | resized, resized_mask = resize_image( | 
					
						
						|  | image, resize_mode, base_image_input_size, pad_value, | 
					
						
						|  | ) | 
					
						
						|  | resized = normalize_image(resized, normalized_mode) | 
					
						
						|  | if len(resized.shape) == 3: | 
					
						
						|  | resized = np.expand_dims(resized, 0) | 
					
						
						|  | resized_mask = np.expand_dims(resized_mask, 0) | 
					
						
						|  | crop_patch_w = base_image_input_size[1] // image_patch_size | 
					
						
						|  | crop_patch_h = base_image_input_size[0] // image_patch_size | 
					
						
						|  | resize_idx = np.arange(crop_patch_w*crop_patch_h).reshape([crop_patch_h, crop_patch_w]) | 
					
						
						|  | return resized, resized_mask, resize_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_overlapping_crops( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | resize_mode: str, | 
					
						
						|  | normalize_mode: str, | 
					
						
						|  | max_crops: int, | 
					
						
						|  | overlap_margins: List[int], | 
					
						
						|  | base_image_input_size: List[int], | 
					
						
						|  | pad_value: float, | 
					
						
						|  | image_patch_size: int, | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | 
					
						
						|  | """Decompose an image into a set of overlapping crops | 
					
						
						|  |  | 
					
						
						|  | :return crop_arr: [n_crops, h, w, 3] The crops | 
					
						
						|  | :return mask_arr: [n_crops, h, w] The padding masks | 
					
						
						|  | :return patch_idx: [overlap_patch_h, overlap_patch_w] For each patch in the resized image | 
					
						
						|  | the crops were extracted from, what patch in `crop_arr` it corresponds to | 
					
						
						|  | """ | 
					
						
						|  | original_image_h, original_image_w = image.shape[:2] | 
					
						
						|  | crop_size = base_image_input_size[0] | 
					
						
						|  | assert base_image_input_size[0] == base_image_input_size[1] | 
					
						
						|  |  | 
					
						
						|  | left_margin, right_margin = overlap_margins | 
					
						
						|  | total_margin_pixels = image_patch_size * (right_margin + left_margin) | 
					
						
						|  | crop_patches = base_image_input_size[0] // image_patch_size | 
					
						
						|  | crop_window_patches = crop_patches - (right_margin + left_margin) | 
					
						
						|  | crop_window_size = crop_window_patches * image_patch_size | 
					
						
						|  | crop_patch_w = base_image_input_size[1] // image_patch_size | 
					
						
						|  | crop_patch_h = base_image_input_size[0] // image_patch_size | 
					
						
						|  | original_image_h, original_image_w = image.shape[:2] | 
					
						
						|  | crop_size = base_image_input_size[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tiling = select_tiling( | 
					
						
						|  | original_image_h - total_margin_pixels, | 
					
						
						|  | original_image_w - total_margin_pixels, | 
					
						
						|  | crop_window_size, | 
					
						
						|  | max_crops, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | src, img_mask = resize_image( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | [tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels], | 
					
						
						|  | pad_value, | 
					
						
						|  | ) | 
					
						
						|  | src = normalize_image(src, normalize_mode) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n_crops = tiling[0] * tiling[1] | 
					
						
						|  | crop_arr = np.zeros([n_crops, crop_size, crop_size, 3], dtype=src.dtype) | 
					
						
						|  | mask_arr = np.zeros([n_crops, crop_size, crop_size], dtype=img_mask.dtype) | 
					
						
						|  | patch_idx_arr = np.zeros([n_crops, crop_patch_h, crop_patch_w], dtype=np.int32) | 
					
						
						|  | on = 0 | 
					
						
						|  | on_crop = 0 | 
					
						
						|  | for i in range(tiling[0]): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y0 = i*crop_window_size | 
					
						
						|  | for j in range(tiling[1]): | 
					
						
						|  | x0 = j*crop_window_size | 
					
						
						|  | crop_arr[on_crop] = src[y0:y0+crop_size, x0:x0+crop_size] | 
					
						
						|  | mask_arr[on_crop] = img_mask[y0:y0+crop_size, x0:x0+crop_size] | 
					
						
						|  | patch_idx = np.arange(crop_patch_w*crop_patch_h).reshape(crop_patch_h, crop_patch_w) | 
					
						
						|  | patch_idx += on_crop * crop_patch_h * crop_patch_w | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i != 0: | 
					
						
						|  | patch_idx[:left_margin, :] = -1 | 
					
						
						|  | if j != 0: | 
					
						
						|  | patch_idx[:, :left_margin] = -1 | 
					
						
						|  | if i != tiling[0]-1: | 
					
						
						|  | patch_idx[-right_margin:, :] = -1 | 
					
						
						|  | if j != tiling[1]-1: | 
					
						
						|  | patch_idx[:, -right_margin:] = -1 | 
					
						
						|  | patch_idx_arr[on_crop] = patch_idx | 
					
						
						|  | on_crop += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | patch_idx_arr = np.reshape( | 
					
						
						|  | patch_idx_arr, | 
					
						
						|  | [tiling[0], tiling[1], crop_patch_h, crop_patch_w] | 
					
						
						|  | ) | 
					
						
						|  | patch_idx_arr = np.transpose(patch_idx_arr, [0, 2, 1, 3]) | 
					
						
						|  | patch_idx_arr = np.reshape(patch_idx_arr, [-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | patch_idx_arr = patch_idx_arr[patch_idx_arr >= 0].reshape( | 
					
						
						|  | src.shape[0]//image_patch_size, | 
					
						
						|  | src.shape[1]//image_patch_size, | 
					
						
						|  | ) | 
					
						
						|  | return crop_arr, mask_arr, patch_idx_arr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def batch_pixels_to_patches(array: np.ndarray, patch_size: int) -> np.ndarray: | 
					
						
						|  | """Reshape images of [n_images, h, w, 3] -> [n_images, n_patches, pixels_per_patch]""" | 
					
						
						|  | if len(array.shape) == 3: | 
					
						
						|  | n_crops, h, w = array.shape | 
					
						
						|  | h_patches = h//patch_size | 
					
						
						|  | w_patches = w//patch_size | 
					
						
						|  | array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size]) | 
					
						
						|  | array = np.transpose(array, [0, 1, 3, 2, 4]) | 
					
						
						|  | array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size]) | 
					
						
						|  | return array | 
					
						
						|  | else: | 
					
						
						|  | n_crops, h, w, c = array.shape | 
					
						
						|  | h_patches = h//patch_size | 
					
						
						|  | w_patches = w//patch_size | 
					
						
						|  | array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size, c]) | 
					
						
						|  | array = np.transpose(array, [0, 1, 3, 2, 4, 5]) | 
					
						
						|  | array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size*c]) | 
					
						
						|  | return array | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def arange_for_pooling( | 
					
						
						|  | idx_arr: np.ndarray, | 
					
						
						|  | pool_h: int, | 
					
						
						|  | pool_w: int, | 
					
						
						|  | ) -> np.ndarray: | 
					
						
						|  | h_pad = pool_h * ((idx_arr.shape[0] + pool_h - 1) // pool_h) - idx_arr.shape[0] | 
					
						
						|  | w_pad = pool_w * ((idx_arr.shape[1] + pool_w - 1) // pool_w) - idx_arr.shape[1] | 
					
						
						|  | idx_arr = np.pad(idx_arr, [[h_pad//2, (h_pad+1)//2], [w_pad//2, (w_pad+1)//2]], | 
					
						
						|  | mode='constant',constant_values=-1) | 
					
						
						|  | return einops.rearrange( | 
					
						
						|  | idx_arr, "(h dh) (w dw) -> h w (dh dw)", dh=pool_h, dw=pool_w) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def image_to_patches_and_grids( | 
					
						
						|  | image: ImageInput, | 
					
						
						|  | crop_mode: str, | 
					
						
						|  | resize_mode: str, | 
					
						
						|  | normalize_mode: str, | 
					
						
						|  | max_crops: int, | 
					
						
						|  | overlap_margins: List[int], | 
					
						
						|  | base_image_input_size: List[int], | 
					
						
						|  | pad_value: float, | 
					
						
						|  | image_patch_size: int, | 
					
						
						|  | image_pooling_w: int, | 
					
						
						|  | image_pooling_h: int, | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | :return image_grids, the shape of each (low-res, high-res) image after pooling | 
					
						
						|  | :return crops, the image crops to processes with the ViT | 
					
						
						|  | :return mask, the padding mask for each crop | 
					
						
						|  | :return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the | 
					
						
						|  | patches in `crops` to pool for that token, masked with -1 | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(base_image_input_size, int): | 
					
						
						|  | base_image_input_size = (base_image_input_size, base_image_input_size) | 
					
						
						|  |  | 
					
						
						|  | base_image_input_d = image_patch_size | 
					
						
						|  | pooling_w = image_pooling_w | 
					
						
						|  | pooling_h = image_pooling_h | 
					
						
						|  | crop_patch_w = base_image_input_size[1] // base_image_input_d | 
					
						
						|  | crop_patch_h = base_image_input_size[0] // base_image_input_d | 
					
						
						|  |  | 
					
						
						|  | if crop_mode == "resize": | 
					
						
						|  | resized, resized_mask, resize_idx = build_resized_image( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) | 
					
						
						|  | h, w = pooling_idx.shape[:2] | 
					
						
						|  | pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  | image_grid = [np.array([h, w])] | 
					
						
						|  | return ( | 
					
						
						|  | np.stack(image_grid, 0), | 
					
						
						|  | batch_pixels_to_patches(resized, image_patch_size), | 
					
						
						|  | batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1), | 
					
						
						|  | pooling_idx, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]: | 
					
						
						|  | crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | max_crops, | 
					
						
						|  | overlap_margins, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size, | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w) | 
					
						
						|  | h, w = pooling_idx.shape[:2] | 
					
						
						|  | pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  | image_grid = [np.array([h, w])] | 
					
						
						|  |  | 
					
						
						|  | if crop_mode == "overlap-and-resize": | 
					
						
						|  | crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size) | 
					
						
						|  | mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) | 
					
						
						|  | return np.stack(image_grid, 0), crop_arr, mask_arr, pooling_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resized, resized_mask, resize_idx = build_resized_image( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size | 
					
						
						|  | ) | 
					
						
						|  | crop_arr = np.concatenate([resized, crop_arr], 0) | 
					
						
						|  |  | 
					
						
						|  | mask_arr = np.concatenate([resized_mask, mask_arr], 0) | 
					
						
						|  |  | 
					
						
						|  | resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) | 
					
						
						|  | h, w = resize_idx.shape[:2] | 
					
						
						|  | resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooling_idx = np.where( | 
					
						
						|  | pooling_idx >= 0, | 
					
						
						|  | pooling_idx + crop_patch_h*crop_patch_w, | 
					
						
						|  | -1 | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = np.concatenate([resize_idx, pooling_idx]) | 
					
						
						|  | image_grid = [ | 
					
						
						|  | np.array([h, w]), | 
					
						
						|  | ] + image_grid | 
					
						
						|  |  | 
					
						
						|  | mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) | 
					
						
						|  | return ( | 
					
						
						|  | np.stack(image_grid, 0), | 
					
						
						|  | batch_pixels_to_patches(crop_arr, image_patch_size), | 
					
						
						|  | mask_arr, | 
					
						
						|  | pooling_idx | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(crop_mode) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def image_to_patches_and_tokens( | 
					
						
						|  | image: ImageInput, | 
					
						
						|  | crop_mode: str, | 
					
						
						|  | use_col_tokens: bool, | 
					
						
						|  | resize_mode: str, | 
					
						
						|  | normalize_mode: str, | 
					
						
						|  | max_crops: int, | 
					
						
						|  | overlap_margins: List[int], | 
					
						
						|  | base_image_input_size: List[int], | 
					
						
						|  | pad_value: float, | 
					
						
						|  | image_patch_size: int, | 
					
						
						|  | image_pooling_w: int, | 
					
						
						|  | image_pooling_h: int, | 
					
						
						|  | image_patch_token_id: int, | 
					
						
						|  | image_col_token_id: int, | 
					
						
						|  | image_start_token_id: int, | 
					
						
						|  | image_end_token_id: int, | 
					
						
						|  | ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | :return image_tokens, the token IDS for this image, including special tokens | 
					
						
						|  | :return crops, the image crops to processes with the ViT | 
					
						
						|  | :return mask, the padding mask for each crop | 
					
						
						|  | :return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the | 
					
						
						|  | patches in `crops` to pool for that token, masked with -1 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if isinstance(base_image_input_size, int): | 
					
						
						|  | base_image_input_size = (base_image_input_size, base_image_input_size) | 
					
						
						|  |  | 
					
						
						|  | base_image_input_d = image_patch_size | 
					
						
						|  | pooling_w = image_pooling_w | 
					
						
						|  | pooling_h = image_pooling_h | 
					
						
						|  | patch_id = image_patch_token_id | 
					
						
						|  | col_id = image_col_token_id | 
					
						
						|  | start_id = image_start_token_id | 
					
						
						|  | end_id = image_end_token_id | 
					
						
						|  | crop_patch_w = base_image_input_size[1] // base_image_input_d | 
					
						
						|  | crop_patch_h = base_image_input_size[0] // base_image_input_d | 
					
						
						|  |  | 
					
						
						|  | if crop_mode == "resize": | 
					
						
						|  | resized, resized_mask, resize_idx = build_resized_image( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) | 
					
						
						|  | h, w = pooling_idx.shape[:2] | 
					
						
						|  | pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  | per_row = np.full( | 
					
						
						|  | (w,), | 
					
						
						|  | patch_id, | 
					
						
						|  | dtype=np.int32 | 
					
						
						|  | ) | 
					
						
						|  | if use_col_tokens: | 
					
						
						|  | per_row = np.concatenate([per_row, [col_id]], 0) | 
					
						
						|  | extra_tokens = np.tile(per_row, [h]) | 
					
						
						|  | joint = [ | 
					
						
						|  | [start_id], | 
					
						
						|  | extra_tokens, | 
					
						
						|  | [end_id], | 
					
						
						|  | ] | 
					
						
						|  | return ( | 
					
						
						|  | np.concatenate(joint, 0), | 
					
						
						|  | batch_pixels_to_patches(resized, image_patch_size), | 
					
						
						|  | batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1), | 
					
						
						|  | pooling_idx, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]: | 
					
						
						|  | crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | max_crops, | 
					
						
						|  | overlap_margins, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size, | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w) | 
					
						
						|  | h, w = pooling_idx.shape[:2] | 
					
						
						|  | pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | per_row = np.full(w, patch_id, dtype=np.int32) | 
					
						
						|  | if use_col_tokens: | 
					
						
						|  | per_row = np.concatenate([per_row, [col_id]], 0) | 
					
						
						|  | joint = np.tile(per_row, [h]) | 
					
						
						|  | joint = [ | 
					
						
						|  | [start_id], | 
					
						
						|  | joint, | 
					
						
						|  | [end_id] | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | if crop_mode == "overlap-and-resize": | 
					
						
						|  | crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size) | 
					
						
						|  | mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) | 
					
						
						|  | return np.concatenate(joint, 0), crop_arr, mask_arr, pooling_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resized, resized_mask, resize_idx = build_resized_image( | 
					
						
						|  | image, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size | 
					
						
						|  | ) | 
					
						
						|  | crop_arr = np.concatenate([resized, crop_arr], 0) | 
					
						
						|  |  | 
					
						
						|  | mask_arr = np.concatenate([resized_mask, mask_arr], 0) | 
					
						
						|  |  | 
					
						
						|  | resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) | 
					
						
						|  | h, w = resize_idx.shape[:2] | 
					
						
						|  | resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooling_idx = np.where( | 
					
						
						|  | pooling_idx >= 0, | 
					
						
						|  | pooling_idx + crop_patch_h*crop_patch_w, | 
					
						
						|  | -1 | 
					
						
						|  | ) | 
					
						
						|  | pooling_idx = np.concatenate([resize_idx, pooling_idx]) | 
					
						
						|  |  | 
					
						
						|  | per_row = np.full( | 
					
						
						|  | (w,), | 
					
						
						|  | patch_id, | 
					
						
						|  | dtype=np.int32 | 
					
						
						|  | ) | 
					
						
						|  | if use_col_tokens: | 
					
						
						|  | per_row = np.concatenate([per_row, [col_id]], 0) | 
					
						
						|  | extra_tokens = np.tile(per_row, [h]) | 
					
						
						|  | joint = [ | 
					
						
						|  | [start_id], | 
					
						
						|  | extra_tokens, | 
					
						
						|  | [end_id], | 
					
						
						|  | ] + joint | 
					
						
						|  | mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) | 
					
						
						|  | return ( | 
					
						
						|  | np.concatenate(joint, 0), | 
					
						
						|  | batch_pixels_to_patches(crop_arr, image_patch_size), | 
					
						
						|  | mask_arr, | 
					
						
						|  | pooling_idx | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(crop_mode) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActImagesKwargs(ImagesKwargs, total=False): | 
					
						
						|  | crop_mode: Optional[str] | 
					
						
						|  | resize_mode: Optional[str] | 
					
						
						|  | normalize_mode: Optional[str] | 
					
						
						|  | max_crops: Optional[int] | 
					
						
						|  | max_multi_image_crops: Optional[int] | 
					
						
						|  | overlap_margins: Optional[List[int]] | 
					
						
						|  | base_image_input_size: Optional[List[int]] | 
					
						
						|  | pad_value: Optional[float] | 
					
						
						|  | image_patch_size: Optional[int] | 
					
						
						|  | image_pooling_w: Optional[int] | 
					
						
						|  | image_pooling_h: Optional[int] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActImageProcessor(BaseImageProcessor): | 
					
						
						|  |  | 
					
						
						|  | model_input_names = ["images", "pooled_patches_idx", "image_masks"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | crop_mode: str = "overlap-and-resize-c2", | 
					
						
						|  | resize_mode: str = "siglip", | 
					
						
						|  | normalize_mode: str = "siglip", | 
					
						
						|  | max_crops: int = 8, | 
					
						
						|  | max_multi_image_crops: int = 4, | 
					
						
						|  | overlap_margins: List[int] = [4, 4], | 
					
						
						|  | base_image_input_size: List[int] = (378, 378), | 
					
						
						|  | pad_value: float = 0.0, | 
					
						
						|  | image_patch_size: int = 14, | 
					
						
						|  | image_pooling_w: int = 2, | 
					
						
						|  | image_pooling_h: int = 2, | 
					
						
						|  | do_convert_rgb: bool = True, | 
					
						
						|  | do_pad: Optional[bool] = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.crop_mode = crop_mode | 
					
						
						|  | self.resize_mode = resize_mode | 
					
						
						|  | self.normalize_mode = normalize_mode | 
					
						
						|  | self.overlap_margins = overlap_margins | 
					
						
						|  | self.max_crops = max_crops | 
					
						
						|  | self.max_multi_image_crops = max_multi_image_crops | 
					
						
						|  | self.overlap_margins = overlap_margins | 
					
						
						|  | self.base_image_input_size = base_image_input_size | 
					
						
						|  | self.pad_value = pad_value | 
					
						
						|  | self.image_patch_size = image_patch_size | 
					
						
						|  | self.image_pooling_w = image_pooling_w | 
					
						
						|  | self.image_pooling_h = image_pooling_h | 
					
						
						|  | self.do_convert_rgb = do_convert_rgb | 
					
						
						|  | self.do_pad = do_pad | 
					
						
						|  |  | 
					
						
						|  | def to_channel_dimension_last( | 
					
						
						|  | self, | 
					
						
						|  | images: List[ImageInput], | 
					
						
						|  | ) -> List[ImageInput]: | 
					
						
						|  | """ | 
					
						
						|  | Convert images to channel dimension last. | 
					
						
						|  | """ | 
					
						
						|  | new_images = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_multi_image(image): | 
					
						
						|  | new_images.append([to_channel_dimension_format(img, ChannelDimension.LAST) for img in image]) | 
					
						
						|  | else: | 
					
						
						|  | new_images.append(to_channel_dimension_format(image, ChannelDimension.LAST)) | 
					
						
						|  | return new_images | 
					
						
						|  |  | 
					
						
						|  | def to_numpy_array( | 
					
						
						|  | self, | 
					
						
						|  | images: List[ImageInput], | 
					
						
						|  | ) -> List[np.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | Convert images to numpy array. | 
					
						
						|  | """ | 
					
						
						|  | new_images = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_multi_image(image): | 
					
						
						|  | new_images.append([to_numpy_array(img) for img in image]) | 
					
						
						|  | else: | 
					
						
						|  | new_images.append(to_numpy_array(image)) | 
					
						
						|  | return new_images | 
					
						
						|  |  | 
					
						
						|  | def to_rgb( | 
					
						
						|  | self, | 
					
						
						|  | images: List[ImageInput], | 
					
						
						|  | ) -> List[ImageInput]: | 
					
						
						|  | """ | 
					
						
						|  | Convert images to RGB. | 
					
						
						|  | """ | 
					
						
						|  | new_images = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_multi_image(image): | 
					
						
						|  | new_images.append([convert_to_rgb(img) for img in image]) | 
					
						
						|  | else: | 
					
						
						|  | new_images.append(convert_to_rgb(image)) | 
					
						
						|  | return new_images | 
					
						
						|  |  | 
					
						
						|  | def pad_arrays(self, arrays: List[np.ndarray], pad_value: float = -1) -> np.ndarray: | 
					
						
						|  | max_len = max(arr.shape[0] for arr in arrays) | 
					
						
						|  | padded_arr = np.full( | 
					
						
						|  | [len(arrays), max_len] + list(arrays[0].shape[1:]), pad_value, dtype=arrays[0].dtype | 
					
						
						|  | ) | 
					
						
						|  | for ix, arr in enumerate(arrays): | 
					
						
						|  | padded_arr[ix, :len(arr)] = arr[:max_len] | 
					
						
						|  | return padded_arr | 
					
						
						|  |  | 
					
						
						|  | def pad_for_batching(self, data: Dict[str, Any]) -> Dict[str, Any]: | 
					
						
						|  | """ | 
					
						
						|  | Pad the data for batching. | 
					
						
						|  | """ | 
					
						
						|  | images = self.pad_arrays(data["images"]) | 
					
						
						|  | pooled_patches_idx = self.pad_arrays(data["pooled_patches_idx"]) | 
					
						
						|  | image_masks = self.pad_arrays(data["image_masks"]) | 
					
						
						|  | image_grids = self.pad_arrays(data["image_grids"]) | 
					
						
						|  | new_data = dict( | 
					
						
						|  | images=images, | 
					
						
						|  | pooled_patches_idx=pooled_patches_idx, | 
					
						
						|  | image_masks=image_masks, | 
					
						
						|  | image_grids=image_grids, | 
					
						
						|  | ) | 
					
						
						|  | return new_data | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: Union[ImageInput, List[ImageInput]], | 
					
						
						|  | crop_mode: Optional[str] = None, | 
					
						
						|  | resize_mode: Optional[str] = None, | 
					
						
						|  | normalize_mode: Optional[str] = None, | 
					
						
						|  | max_crops: Optional[int] = None, | 
					
						
						|  | max_multi_image_crops: Optional[int] = None, | 
					
						
						|  | overlap_margins: Optional[List[int]] = None, | 
					
						
						|  | base_image_input_size: Optional[List[int]] = None, | 
					
						
						|  | pad_value: Optional[float] = None, | 
					
						
						|  | image_patch_size: Optional[int] = None, | 
					
						
						|  | image_pooling_w: Optional[int] = None, | 
					
						
						|  | image_pooling_h: Optional[int] = None, | 
					
						
						|  | do_convert_rgb: Optional[bool] = None, | 
					
						
						|  | do_pad: Optional[bool] = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> BatchFeature: | 
					
						
						|  | """ | 
					
						
						|  | Preprocess an image for the model. | 
					
						
						|  | Args: | 
					
						
						|  | image: The image to preprocess. | 
					
						
						|  | crop_mode: The crop mode to use. If None, use the default crop mode. | 
					
						
						|  | resize_mode: The resize mode to use. If None, use the default resize mode. | 
					
						
						|  | normalize_mode: The normalization mode to use. If None, use the default normalization mode. | 
					
						
						|  | max_crops: The maximum number of crops to use. If None, use the default value. | 
					
						
						|  | max_multi_image_crops: The maximum number of crops to use for multi-image inputs. | 
					
						
						|  | overlap_margins: The overlap margins to use. If None, use the default values. | 
					
						
						|  | base_image_input_size: The base image input size to use. If None, use the default size. | 
					
						
						|  | pad_value: The padding value to use. If None, use the default value. | 
					
						
						|  | image_patch_size: The size of the image patches. If None, use the default size. | 
					
						
						|  | image_pooling_h: The height of the image pooling. If None, use the default height. | 
					
						
						|  | image_pooling_w: The width of the image pooling. If None, use the default width. | 
					
						
						|  | do_convert_rgb: Whether to convert the image to RGB. If None, use the default value. | 
					
						
						|  | do_pad: Whether to pad image features. If None, use the default value. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | A tuple containing: | 
					
						
						|  | - The image grids | 
					
						
						|  | - The preprocessed images | 
					
						
						|  | - The padding masks | 
					
						
						|  | - The pooling indices | 
					
						
						|  | """ | 
					
						
						|  | images = make_batched_images(images) | 
					
						
						|  |  | 
					
						
						|  | if not valid_images(images): | 
					
						
						|  | raise ValueError("Invalid image input") | 
					
						
						|  |  | 
					
						
						|  | crop_mode = crop_mode or self.crop_mode | 
					
						
						|  | normalize_mode = normalize_mode or self.normalize_mode | 
					
						
						|  | resize_mode = resize_mode or self.resize_mode | 
					
						
						|  | max_crops = max_crops or self.max_crops | 
					
						
						|  | max_multi_image_crops = max_multi_image_crops or self.max_multi_image_crops | 
					
						
						|  | overlap_margins = overlap_margins or self.overlap_margins | 
					
						
						|  | base_image_input_size = base_image_input_size or self.base_image_input_size | 
					
						
						|  | pad_value = pad_value or self.pad_value | 
					
						
						|  | image_patch_size = image_patch_size or self.image_patch_size | 
					
						
						|  | image_pooling_w = image_pooling_w or self.image_pooling_w | 
					
						
						|  | image_pooling_h = image_pooling_h or self.image_pooling_h | 
					
						
						|  | do_convert_rgb = do_convert_rgb or self.do_convert_rgb | 
					
						
						|  | do_pad = do_pad or self.do_pad | 
					
						
						|  |  | 
					
						
						|  | if do_convert_rgb: | 
					
						
						|  | images = self.to_rgb(images) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = self.to_numpy_array(images) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = self.to_channel_dimension_last(images) | 
					
						
						|  |  | 
					
						
						|  | batch_image_grids = [] | 
					
						
						|  | batch_crops = [] | 
					
						
						|  | batch_crop_masks = [] | 
					
						
						|  | batch_pooled_patches_idx = [] | 
					
						
						|  |  | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_multi_image(image): | 
					
						
						|  | all_image_grids = [] | 
					
						
						|  | all_crops = [] | 
					
						
						|  | all_crop_masks = [] | 
					
						
						|  | pooled_patches_idx = [] | 
					
						
						|  | for img in image: | 
					
						
						|  | image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids( | 
					
						
						|  | img, | 
					
						
						|  | crop_mode, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | max_multi_image_crops, | 
					
						
						|  | overlap_margins, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size, | 
					
						
						|  | image_pooling_w, | 
					
						
						|  | image_pooling_h, | 
					
						
						|  | ) | 
					
						
						|  | pooled_patches_idx.append(pooled_idx + sum(np.prod(x.shape[:2]) for x in all_crops)) | 
					
						
						|  | all_crops.append(crops) | 
					
						
						|  | all_crop_masks.append(img_mask) | 
					
						
						|  | all_image_grids.append(image_grid) | 
					
						
						|  | all_image_grids = np.concatenate(all_image_grids, 0) | 
					
						
						|  | all_crops = np.concatenate(all_crops, 0) | 
					
						
						|  | all_crop_masks = np.concatenate(all_crop_masks, 0) | 
					
						
						|  | pooled_patches_idx = np.concatenate(pooled_patches_idx, 0) | 
					
						
						|  |  | 
					
						
						|  | batch_image_grids.append(all_image_grids) | 
					
						
						|  | batch_crops.append(all_crops) | 
					
						
						|  | batch_crop_masks.append(all_crop_masks) | 
					
						
						|  | batch_pooled_patches_idx.append(pooled_patches_idx) | 
					
						
						|  | else: | 
					
						
						|  | image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids( | 
					
						
						|  | image, | 
					
						
						|  | crop_mode, | 
					
						
						|  | resize_mode, | 
					
						
						|  | normalize_mode, | 
					
						
						|  | max_crops, | 
					
						
						|  | overlap_margins, | 
					
						
						|  | base_image_input_size, | 
					
						
						|  | pad_value, | 
					
						
						|  | image_patch_size, | 
					
						
						|  | image_pooling_w, | 
					
						
						|  | image_pooling_h, | 
					
						
						|  | ) | 
					
						
						|  | batch_image_grids.append(image_grid) | 
					
						
						|  | batch_crops.append(crops) | 
					
						
						|  | batch_crop_masks.append(img_mask) | 
					
						
						|  | batch_pooled_patches_idx.append(pooled_idx) | 
					
						
						|  |  | 
					
						
						|  | data =dict( | 
					
						
						|  | images=batch_crops, | 
					
						
						|  | pooled_patches_idx=batch_pooled_patches_idx, | 
					
						
						|  | image_masks=batch_crop_masks, | 
					
						
						|  | image_grids=batch_image_grids, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_pad: | 
					
						
						|  | data = self.pad_for_batching(data) | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data, tensor_type=return_tensors) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MolmoActImageProcessor.register_for_auto_class() |