Aman K
commited on
Commit
·
a1c1315
1
Parent(s):
5ae3a9f
prepared alignment model to be loaded using flaxautomodel
Browse files- config.json +4 -1
- flax_model.msgpack +3 -0
- flax_modeling_alignment.py +181 -0
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "amankhandelia/
|
| 3 |
"activation_dropout": 0.1,
|
| 4 |
"adapter_attn_dim": null,
|
| 5 |
"adapter_kernel_size": 3,
|
|
@@ -9,6 +9,9 @@
|
|
| 9 |
"architectures": [
|
| 10 |
"Wav2Vec2ForAudioFrameClassification"
|
| 11 |
],
|
|
|
|
|
|
|
|
|
|
| 12 |
"attention_dropout": 0.0,
|
| 13 |
"bos_token_id": 1,
|
| 14 |
"classifier_proj_size": 256,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "amankhandelia/flax_mms_alignment_model",
|
| 3 |
"activation_dropout": 0.1,
|
| 4 |
"adapter_attn_dim": null,
|
| 5 |
"adapter_kernel_size": 3,
|
|
|
|
| 9 |
"architectures": [
|
| 10 |
"Wav2Vec2ForAudioFrameClassification"
|
| 11 |
],
|
| 12 |
+
"auto_map": {
|
| 13 |
+
"FlaxAutoModel": "flax_modeling_alignment.FlaxWav2Vec2ForAudioFrameClassification"
|
| 14 |
+
},
|
| 15 |
"attention_dropout": 0.0,
|
| 16 |
"bos_token_id": 1,
|
| 17 |
"classifier_proj_size": 256,
|
flax_model.msgpack
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a9a569d76919565b0879dec40c3f545a00a03cd839820a248058dc021e862a6
|
| 3 |
+
size 1261893241
|
flax_modeling_alignment.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
+
|
| 3 |
+
import jax
|
| 4 |
+
import jax.numpy as jnp
|
| 5 |
+
import flax.linen as nn
|
| 6 |
+
|
| 7 |
+
from transformers.modeling_flax_outputs import FlaxCausalLMOutput
|
| 8 |
+
from transformers.models.wav2vec2.configuration_wav2vec2 import Wav2Vec2Config
|
| 9 |
+
from transformers.models.wav2vec2.modeling_flax_wav2vec2 import (
|
| 10 |
+
FlaxWav2Vec2FeatureEncoder,
|
| 11 |
+
FlaxWav2Vec2FeatureProjection,
|
| 12 |
+
FlaxWav2Vec2StableLayerNormEncoder,
|
| 13 |
+
FlaxWav2Vec2Adapter,
|
| 14 |
+
FlaxWav2Vec2PreTrainedModel,
|
| 15 |
+
FlaxWav2Vec2BaseModelOutput,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class FlaxWav2Vec2Module(nn.Module):
|
| 20 |
+
config: Wav2Vec2Config
|
| 21 |
+
dtype: jnp.dtype = jnp.float32
|
| 22 |
+
|
| 23 |
+
def setup(self):
|
| 24 |
+
self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype)
|
| 25 |
+
self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype)
|
| 26 |
+
if self.config.mask_time_prob > 0.0 or self.config.mask_feature_prob > 0.0:
|
| 27 |
+
self.masked_spec_embed = self.param(
|
| 28 |
+
"masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,)
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
if self.config.do_stable_layer_norm:
|
| 32 |
+
self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype)
|
| 33 |
+
else:
|
| 34 |
+
raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.")
|
| 35 |
+
|
| 36 |
+
self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None
|
| 37 |
+
|
| 38 |
+
def __call__(
|
| 39 |
+
self,
|
| 40 |
+
input_values,
|
| 41 |
+
attention_mask=None,
|
| 42 |
+
mask_time_indices=None,
|
| 43 |
+
deterministic=True,
|
| 44 |
+
output_attentions=None,
|
| 45 |
+
output_hidden_states=None,
|
| 46 |
+
freeze_feature_encoder=False,
|
| 47 |
+
return_dict=None,
|
| 48 |
+
):
|
| 49 |
+
extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder)
|
| 50 |
+
|
| 51 |
+
# make sure that no loss is computed on padded inputs
|
| 52 |
+
if attention_mask is not None:
|
| 53 |
+
# compute reduced attention_mask corresponding to feature vectors
|
| 54 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
| 55 |
+
extract_features.shape[1], attention_mask, add_adapter=False
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic)
|
| 59 |
+
if mask_time_indices is not None: # apply SpecAugment along time axis with given indices
|
| 60 |
+
hidden_states = jnp.where(
|
| 61 |
+
jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape),
|
| 62 |
+
jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape),
|
| 63 |
+
hidden_states,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
encoder_outputs = self.encoder(
|
| 67 |
+
hidden_states,
|
| 68 |
+
attention_mask=attention_mask,
|
| 69 |
+
deterministic=deterministic,
|
| 70 |
+
output_attentions=output_attentions,
|
| 71 |
+
output_hidden_states=output_hidden_states,
|
| 72 |
+
return_dict=return_dict,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
hidden_states = encoder_outputs[0]
|
| 76 |
+
|
| 77 |
+
if self.adapter is not None:
|
| 78 |
+
hidden_states = self.adapter(hidden_states)
|
| 79 |
+
|
| 80 |
+
if not return_dict:
|
| 81 |
+
return (hidden_states, extract_features) + encoder_outputs[1:]
|
| 82 |
+
|
| 83 |
+
return FlaxWav2Vec2BaseModelOutput(
|
| 84 |
+
last_hidden_state=hidden_states,
|
| 85 |
+
extract_features=extract_features,
|
| 86 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 87 |
+
attentions=encoder_outputs.attentions,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def _get_feat_extract_output_lengths(
|
| 91 |
+
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
|
| 92 |
+
):
|
| 93 |
+
"""
|
| 94 |
+
Computes the output length of the convolutional layers
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
|
| 98 |
+
|
| 99 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
| 100 |
+
# 1D convolutional layer output length formula taken
|
| 101 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
| 102 |
+
return (input_length - kernel_size) // stride + 1
|
| 103 |
+
|
| 104 |
+
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
|
| 105 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
| 106 |
+
|
| 107 |
+
if add_adapter:
|
| 108 |
+
for _ in range(self.config.num_adapter_layers):
|
| 109 |
+
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
|
| 110 |
+
|
| 111 |
+
return input_lengths
|
| 112 |
+
|
| 113 |
+
def _get_feature_vector_attention_mask(
|
| 114 |
+
self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
|
| 115 |
+
):
|
| 116 |
+
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
| 117 |
+
# on inference mode.
|
| 118 |
+
non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]
|
| 119 |
+
|
| 120 |
+
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
|
| 121 |
+
|
| 122 |
+
batch_size = attention_mask.shape[0]
|
| 123 |
+
|
| 124 |
+
attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype)
|
| 125 |
+
# these two operations makes sure that all values
|
| 126 |
+
# before the output lengths indices are attended to
|
| 127 |
+
attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1)
|
| 128 |
+
attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
|
| 129 |
+
return attention_mask
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel):
|
| 133 |
+
module_class = FlaxWav2Vec2Module
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class FlaxWav2Vec2ForAudioFrameClassificationModule(nn.Module):
|
| 137 |
+
config: Wav2Vec2Config
|
| 138 |
+
dtype: jnp.dtype = jnp.float32
|
| 139 |
+
|
| 140 |
+
def setup(self):
|
| 141 |
+
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
|
| 142 |
+
self.classifier = nn.Dense(
|
| 143 |
+
self.config.num_labels,
|
| 144 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
| 145 |
+
dtype=self.dtype,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def __call__(
|
| 149 |
+
self,
|
| 150 |
+
input_values,
|
| 151 |
+
attention_mask=None,
|
| 152 |
+
mask_time_indices=None,
|
| 153 |
+
deterministic=True,
|
| 154 |
+
output_attentions=None,
|
| 155 |
+
output_hidden_states=None,
|
| 156 |
+
freeze_feature_encoder=False,
|
| 157 |
+
return_dict=None,
|
| 158 |
+
):
|
| 159 |
+
outputs = self.wav2vec2(
|
| 160 |
+
input_values,
|
| 161 |
+
attention_mask=attention_mask,
|
| 162 |
+
mask_time_indices=mask_time_indices,
|
| 163 |
+
deterministic=deterministic,
|
| 164 |
+
output_attentions=output_attentions,
|
| 165 |
+
output_hidden_states=output_hidden_states,
|
| 166 |
+
freeze_feature_encoder=freeze_feature_encoder,
|
| 167 |
+
return_dict=return_dict,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
hidden_states = outputs[0]
|
| 171 |
+
|
| 172 |
+
logits = self.classifier(hidden_states)
|
| 173 |
+
|
| 174 |
+
if not return_dict:
|
| 175 |
+
return (logits,) + outputs[2:]
|
| 176 |
+
|
| 177 |
+
return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class FlaxWav2Vec2ForAudioFrameClassification(FlaxWav2Vec2PreTrainedModel):
|
| 181 |
+
module_class = FlaxWav2Vec2ForAudioFrameClassificationModule
|