File size: 6,660 Bytes
faa1b64
 
 
 
 
 
 
138d9de
 
 
 
 
 
 
 
faa1b64
 
 
 
 
 
 
 
 
 
 
138d9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa1b64
 
138d9de
 
 
 
faa1b64
138d9de
 
 
 
faa1b64
138d9de
 
faa1b64
138d9de
 
faa1b64
138d9de
 
 
 
 
faa1b64
 
138d9de
faa1b64
138d9de
faa1b64
138d9de
 
 
 
 
faa1b64
 
138d9de
faa1b64
 
138d9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa1b64
138d9de
faa1b64
 
 
 
 
138d9de
 
faa1b64
 
 
 
138d9de
 
 
 
 
 
 
 
 
faa1b64
138d9de
faa1b64
138d9de
 
 
 
faa1b64
 
 
 
 
 
 
138d9de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import argparse
from safetensors.torch import save_file, safe_open
from tqdm import tqdm
import sys


def normalize_key(key):
    """Strips the 'model.diffusion_model.' prefix from a key if it exists."""
    prefix = 'model.diffusion_model.'
    if key.startswith(prefix):
        return key[len(prefix):]
    return key


def get_torch_dtype(dtype_str: str):
    """Converts a string to a torch.dtype object."""
    if dtype_str == "fp32":
        return torch.float32
    if dtype_str == "fp16":
        return torch.float16
    if dtype_str == "bf16":
        return torch.bfloat16
    raise ValueError(f"Unsupported dtype: {dtype_str}")


def randomized_svd(matrix, rank, n_oversamples=10):
    """Performs Randomized SVD for a faster approximation."""
    max_rank = min(matrix.shape)
    if rank >= max_rank:
        rank = max_rank
        n_oversamples = 0

    target_rank = min(rank + n_oversamples, max_rank)

    P = torch.randn((matrix.shape[1], target_rank), device=matrix.device, dtype=matrix.dtype)
    Y = matrix @ P

    Q, _ = torch.linalg.qr(Y.float())

    B = Q.T @ matrix.float()

    U_b, S, Vh = torch.linalg.svd(B, full_matrices=False)
    U = Q @ U_b

    U = U[:, :rank]
    S = S[:rank]
    Vh = Vh[:rank, :]

    return U, S, Vh


def extract_and_svd_lora(args):
    """Main function to extract, decompose, and save the LoRA."""
    print(f"Loading base model A: {args.model_a}")
    print(f"Loading finetuned model B: {args.model_b}")
    print(f"Using decomposition method: {args.method}")

    lora_tensors = {}
    dtype = get_torch_dtype(args.precision)

    with safe_open(args.model_a, framework="pt", device="cpu") as f_a, \
            safe_open(args.model_b, framework="pt", device="cpu") as f_b:

        keys_a_original = set(f_a.keys())
        keys_b_original = set(f_b.keys())
        print(f"\nFound {len(keys_a_original)} keys in model A.")
        print(f"Found {len(keys_b_original)} keys in model B.")

        normalized_keys_a = {normalize_key(k): k for k in keys_a_original}
        normalized_keys_b = {normalize_key(k): k for k in keys_b_original}

        common_normalized_keys = set(normalized_keys_a.keys()).intersection(set(normalized_keys_b.keys()))
        print(f"Found {len(common_normalized_keys)} common keys after normalization.\n")

        processable_keys = {k for k in common_normalized_keys if
                            (k.endswith('.weight') or k.endswith('.bias')) and 'lora_' not in k}

        if not processable_keys:
            print("No common weight or bias keys found to process. Check if models are compatible.")
            sys.exit(1)

        print(f"Found {len(processable_keys)} common keys to process.")

        for norm_key in tqdm(sorted(list(processable_keys)), desc="Processing Layers"):
            try:
                original_key_a = normalized_keys_a[norm_key]
                original_key_b = normalized_keys_b[norm_key]

                tensor_a = f_a.get_tensor(original_key_a).to(device=args.device, dtype=dtype)
                tensor_b = f_b.get_tensor(original_key_b).to(device=args.device, dtype=dtype)

                if tensor_a.shape != tensor_b.shape:
                    tqdm.write(f"Skipping key {norm_key} due to shape mismatch")
                    continue

                delta = tensor_b - tensor_a

                if norm_key.endswith('.weight'):
                    delta_w = delta
                    if delta_w.dim() < 2:
                        tqdm.write(f"Skipping weight key {norm_key} as it's not a 2D matrix.")
                        continue
                    if delta_w.dim() > 2:
                        delta_w = delta_w.view(delta_w.shape[0], -1)

                    if args.method == 'rsvd':
                        # Use the new oversamples argument
                        U, S, Vh = randomized_svd(delta_w, args.rank, n_oversamples=args.oversamples)
                    else:
                        U, S, Vh = torch.linalg.svd(delta_w, full_matrices=False)
                        current_rank = min(args.rank, S.size(0))
                        U = U[:, :current_rank]
                        S = S[:current_rank]
                        Vh = Vh[:current_rank, :]

                    lora_down = Vh
                    lora_up = U @ torch.diag(S)

                    base_name = norm_key.replace('.weight', '')
                    prefixed_base_name = f"diffusion_model.{base_name}"
                    lora_down_name = f"{prefixed_base_name}.lora_down.weight"
                    lora_up_name = f"{prefixed_base_name}.lora_up.weight"

                    lora_tensors[lora_down_name] = lora_down.contiguous().cpu().to(torch.float32)
                    lora_tensors[lora_up_name] = lora_up.contiguous().cpu().to(torch.float32)

            except Exception as e:
                tqdm.write(f"Failed to process key {norm_key}: {e}")

    if not lora_tensors:
        print("No tensors were processed. Output file will not be created.")
        return

    print(f"\nSaving {len(lora_tensors)} tensors to {args.output}...")
    save_file(lora_tensors, args.output)
    print("✅ Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Extract a LoRA/LoRA+ from two SafeTensors checkpoints.")
    parser.add_argument("model_a", type=str, help="Path to the base model (A) checkpoint.")
    parser.add_argument("model_b", type=str, help="Path to the finetuned model (B) checkpoint.")
    parser.add_argument("output", type=str, help="Path to save the output file.")

    parser.add_argument("--rank", type=int, required=True, help="The target rank for the decomposition.")
    parser.add_argument("--alpha", type=float, default=1.0,
                        help="Informational alpha value for scaling. This value is NOT saved in the file.")
    parser.add_argument("--method", type=str, default="rsvd", choices=["svd", "rsvd"], help="Decomposition method.")
    parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"],
                        help="Device to use for computation.")
    parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16", "bf16"],
                        help="Precision for calculations.")
    # --- NEW ARGUMENT ---
    parser.add_argument("--oversamples", type=int, default=10,
                        help="Oversampling parameter for Randomized SVD for better accuracy.")

    args = parser.parse_args()

    if args.device == "cuda" and not torch.cuda.is_available():
        print("CUDA is not available. Falling back to CPU.")
        args.device = "cpu"

    extract_and_svd_lora(args)