python-script-dump / lora_redim.py
anyMODE's picture
Upload lora_redim.py
59d2585 verified
raw
history blame
6.58 kB
import os
import argparse
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from tqdm import tqdm
def resize_lora_model(model_path, output_path, new_dim, device):
"""
Resizes the LoRA dimension of a model using SVD for optimal weight preservation.
Args:
model_path (str): Path to the LoRA model to resize.
output_path (str): Path to save the new resized model.
new_dim (int): The target new dimension for the LoRA weights.
device (str): The device to run calculations on ('cuda' or 'cpu').
"""
print(f"Loading model from: {model_path}")
model = load_file(model_path)
new_model = {}
# --- Metadata & Weight Inspection ---
original_dim = None
alpha = None
try:
with safe_open(model_path, framework="pt", device="cpu") as f:
metadata = f.metadata()
if metadata:
if 'ss_network_dim' in metadata:
original_dim = int(metadata['ss_network_dim'])
print(f"Original dimension (from metadata): {original_dim}")
if 'ss_network_alpha' in metadata:
alpha = float(metadata['ss_network_alpha'])
print(f"Original alpha (from metadata): {alpha}")
except Exception as e:
print(f"Could not read metadata: {e}. Dimension and alpha will be inferred.")
# Infer original_dim from weights if not in metadata
if original_dim is None:
for key in model.keys():
if key.endswith((".lora_down.weight", ".lora_A.weight")):
original_dim = model[key].shape[0]
print(f"Inferred original dimension from weights: {original_dim}")
break
# Infer alpha from weights if not in metadata
if alpha is None:
for key in model.keys():
if key.endswith(".alpha"):
alpha = model[key].item()
print(f"Inferred alpha from weights: {alpha}")
break
# Fallback for alpha if still not found
if alpha is None and original_dim is not None:
alpha = float(original_dim)
print(f"Alpha not found, falling back to using dimension: {alpha}")
# --- Tensor Processing ---
lora_keys_to_process = set()
for key in model.keys():
if 'lora_' in key and key.endswith('.weight'):
# Get the base name (e.g., "lora_unet_down_blocks_0_attentions_0_proj_in")
base_key = key.split('.lora_')[0]
lora_keys_to_process.add(base_key)
if not lora_keys_to_process:
print("Error: No LoRA weights found in the model.")
return
print(f"\nFound {len(lora_keys_to_process)} LoRA modules to resize...")
for base_key in tqdm(sorted(list(lora_keys_to_process)), desc="Resizing modules"):
try:
down_key, up_key = None, None
# Determine naming convention
if base_key + ".lora_down.weight" in model:
down_key = base_key + ".lora_down.weight"
up_key = base_key + ".lora_up.weight"
elif base_key + ".lora_A.weight" in model:
down_key = base_key + ".lora_A.weight"
up_key = base_key + ".lora_B.weight"
else:
continue
# Move weights to the selected device for calculation
down_weight = model[down_key].to(device)
up_weight = model[up_key].to(device)
# --- SVD Resizing ---
original_dtype = up_weight.dtype
# Combine the two matrices to get the full weight update
conv2d = down_weight.ndim == 4
if conv2d:
# For conv layers, treat spatial dims as batch dims
down_weight = down_weight.flatten(1)
up_weight = up_weight.flatten(1)
full_weight = up_weight @ down_weight
# Always cast to float32 for SVD, as some devices (CPU, and some GPUs) don't support bfloat16
U, S, Vh = torch.linalg.svd(full_weight.to(torch.float32))
# Truncate or pad the SVD components
U = U[:, :new_dim]
S = S[:new_dim]
Vh = Vh[:new_dim, :]
# Reconstruct the new low-rank matrices
new_down = torch.diag(S) @ Vh
new_up = U
# Reshape back to original conv format if necessary
if conv2d:
new_down = new_down.reshape(new_dim, down_weight.shape[1], 1, 1)
new_up = new_up.reshape(up_weight.shape[0], new_dim, 1, 1)
# Move back to CPU and original dtype for saving
new_model[down_key] = new_down.contiguous().to(original_dtype).cpu()
new_model[up_key] = new_up.contiguous().to(original_dtype).cpu()
# Copy alpha tensor if it exists for this key
alpha_key = base_key + ".alpha"
if alpha_key in model:
new_model[alpha_key] = model[alpha_key]
except KeyError:
continue
# Copy non-LoRA tensors
for key, value in model.items():
if ".lora_" not in key:
new_model[key] = value
# --- Save New Model ---
new_metadata = {'ss_network_dim': str(new_dim)}
if alpha is not None and original_dim is not None and original_dim > 0:
new_alpha = alpha * (new_dim / original_dim)
new_metadata['ss_network_alpha'] = str(new_alpha)
print(f"\nNew alpha scaled to: {new_alpha:.2f}")
print(f"\nSaving resized model to: {output_path}")
save_file(new_model, output_path, metadata=new_metadata)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Resize a LoRA model to a new dimension using SVD.",
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument("model_path", type=str, help="Path to the LoRA model (.safetensors).")
parser.add_argument("output_path", type=str, help="Path to save the resized LoRA model.")
parser.add_argument("new_dim", type=int, help="The new LoRA dimension (rank).")
parser.add_argument("--device", type=str, default=None,
help="Device to use (e.g., 'cpu', 'cuda'). Autodetects if not specified.")
args = parser.parse_args()
if args.device:
device = args.device
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
resize_lora_model(args.model_path, args.output_path, args.new_dim, device)