Upload lora_redim.py
Browse filesChange alpha with the same ratio as rank
- lora_redim.py +95 -45
lora_redim.py
CHANGED
|
@@ -6,18 +6,21 @@ from safetensors import safe_open
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
|
| 8 |
|
| 9 |
-
def resize_lora_model(model_path, output_path, new_dim, device):
|
| 10 |
"""
|
| 11 |
-
Resizes the LoRA dimension of a model using SVD
|
|
|
|
| 12 |
|
| 13 |
Args:
|
| 14 |
model_path (str): Path to the LoRA model to resize.
|
| 15 |
output_path (str): Path to save the new resized model.
|
| 16 |
new_dim (int): The target new dimension for the LoRA weights.
|
| 17 |
device (str): The device to run calculations on ('cuda' or 'cpu').
|
|
|
|
| 18 |
"""
|
| 19 |
print(f"Loading model from: {model_path}")
|
| 20 |
-
model
|
|
|
|
| 21 |
new_model = {}
|
| 22 |
|
| 23 |
# --- Metadata & Weight Inspection ---
|
|
@@ -44,6 +47,14 @@ def resize_lora_model(model_path, output_path, new_dim, device):
|
|
| 44 |
print(f"Inferred original dimension from weights: {original_dim}")
|
| 45 |
break
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Infer alpha from weights if not in metadata
|
| 48 |
if alpha is None:
|
| 49 |
for key in model.keys():
|
|
@@ -52,16 +63,19 @@ def resize_lora_model(model_path, output_path, new_dim, device):
|
|
| 52 |
print(f"Inferred alpha from weights: {alpha}")
|
| 53 |
break
|
| 54 |
|
| 55 |
-
|
| 56 |
-
if alpha is None
|
| 57 |
alpha = float(original_dim)
|
| 58 |
-
print(f"Alpha not found, falling back to using dimension: {alpha}")
|
| 59 |
|
| 60 |
# --- Tensor Processing ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
lora_keys_to_process = set()
|
| 62 |
for key in model.keys():
|
| 63 |
if 'lora_' in key and key.endswith('.weight'):
|
| 64 |
-
# Get the base name (e.g., "lora_unet_down_blocks_0_attentions_0_proj_in")
|
| 65 |
base_key = key.split('.lora_')[0]
|
| 66 |
lora_keys_to_process.add(base_key)
|
| 67 |
|
|
@@ -70,12 +84,13 @@ def resize_lora_model(model_path, output_path, new_dim, device):
|
|
| 70 |
return
|
| 71 |
|
| 72 |
print(f"\nFound {len(lora_keys_to_process)} LoRA modules to resize...")
|
|
|
|
| 73 |
|
| 74 |
for base_key in tqdm(sorted(list(lora_keys_to_process)), desc="Resizing modules"):
|
| 75 |
try:
|
| 76 |
down_key, up_key = None, None
|
| 77 |
|
| 78 |
-
# Determine
|
| 79 |
if base_key + ".lora_down.weight" in model:
|
| 80 |
down_key = base_key + ".lora_down.weight"
|
| 81 |
up_key = base_key + ".lora_up.weight"
|
|
@@ -85,71 +100,98 @@ def resize_lora_model(model_path, output_path, new_dim, device):
|
|
| 85 |
else:
|
| 86 |
continue
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
up_weight = model[up_key].to(device)
|
| 91 |
-
|
| 92 |
-
# --- SVD Resizing ---
|
| 93 |
original_dtype = up_weight.dtype
|
| 94 |
|
| 95 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
conv2d = down_weight.ndim == 4
|
| 97 |
if conv2d:
|
| 98 |
-
|
| 99 |
down_weight = down_weight.flatten(1)
|
| 100 |
up_weight = up_weight.flatten(1)
|
| 101 |
|
|
|
|
| 102 |
full_weight = up_weight @ down_weight
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
# Reshape back to original conv format if necessary
|
| 117 |
if conv2d:
|
| 118 |
-
new_down = new_down.reshape(new_dim,
|
| 119 |
-
new_up = new_up.reshape(up_weight.shape[0], new_dim, 1, 1)
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
new_model[down_key] = new_down.contiguous().to(original_dtype)
|
| 123 |
-
new_model[up_key] = new_up.contiguous().to(original_dtype)
|
| 124 |
|
| 125 |
-
#
|
|
|
|
| 126 |
alpha_key = base_key + ".alpha"
|
| 127 |
if alpha_key in model:
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
continue
|
| 132 |
|
| 133 |
-
# Copy non-LoRA tensors
|
| 134 |
for key, value in model.items():
|
| 135 |
if ".lora_" not in key:
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
#
|
| 139 |
new_metadata = {'ss_network_dim': str(new_dim)}
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
print(f"\nSaving resized model to: {output_path}")
|
| 146 |
save_file(new_model, output_path, metadata=new_metadata)
|
| 147 |
-
print("Done!")
|
| 148 |
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
parser = argparse.ArgumentParser(
|
| 152 |
-
description="Resize a LoRA model to a new dimension
|
| 153 |
formatter_class=argparse.RawTextHelpFormatter
|
| 154 |
)
|
| 155 |
parser.add_argument("model_path", type=str, help="Path to the LoRA model (.safetensors).")
|
|
@@ -157,6 +199,15 @@ if __name__ == "__main__":
|
|
| 157 |
parser.add_argument("new_dim", type=int, help="The new LoRA dimension (rank).")
|
| 158 |
parser.add_argument("--device", type=str, default=None,
|
| 159 |
help="Device to use (e.g., 'cpu', 'cuda'). Autodetects if not specified.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
args = parser.parse_args()
|
| 162 |
|
|
@@ -167,5 +218,4 @@ if __name__ == "__main__":
|
|
| 167 |
|
| 168 |
print(f"Using device: {device}")
|
| 169 |
|
| 170 |
-
resize_lora_model(args.model_path, args.output_path, args.new_dim, device)
|
| 171 |
-
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
|
| 8 |
|
| 9 |
+
def resize_lora_model(model_path, output_path, new_dim, device, method):
|
| 10 |
"""
|
| 11 |
+
Resizes the LoRA dimension of a model using SVD or Randomized SVD.
|
| 12 |
+
Also scales the alpha value(s) proportionally.
|
| 13 |
|
| 14 |
Args:
|
| 15 |
model_path (str): Path to the LoRA model to resize.
|
| 16 |
output_path (str): Path to save the new resized model.
|
| 17 |
new_dim (int): The target new dimension for the LoRA weights.
|
| 18 |
device (str): The device to run calculations on ('cuda' or 'cpu').
|
| 19 |
+
method (str): The resizing method to use ('svd' or 'randomized_svd').
|
| 20 |
"""
|
| 21 |
print(f"Loading model from: {model_path}")
|
| 22 |
+
# Load the model onto CPU memory first to avoid VRAM issues with large models
|
| 23 |
+
model = load_file(model_path, device="cpu")
|
| 24 |
new_model = {}
|
| 25 |
|
| 26 |
# --- Metadata & Weight Inspection ---
|
|
|
|
| 47 |
print(f"Inferred original dimension from weights: {original_dim}")
|
| 48 |
break
|
| 49 |
|
| 50 |
+
if original_dim is None:
|
| 51 |
+
print("Error: Could not determine original LoRA dimension.")
|
| 52 |
+
return
|
| 53 |
+
|
| 54 |
+
if original_dim == new_dim:
|
| 55 |
+
print("Error: New dimension is the same as the original dimension. No changes to make.")
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
# Infer alpha from weights if not in metadata
|
| 59 |
if alpha is None:
|
| 60 |
for key in model.keys():
|
|
|
|
| 63 |
print(f"Inferred alpha from weights: {alpha}")
|
| 64 |
break
|
| 65 |
|
| 66 |
+
# Fallback for alpha if still not found
|
| 67 |
+
if alpha is None:
|
| 68 |
alpha = float(original_dim)
|
| 69 |
+
print(f"Alpha not found, falling back to using dimension value: {alpha}")
|
| 70 |
|
| 71 |
# --- Tensor Processing ---
|
| 72 |
+
# Calculate the scaling ratio for alpha
|
| 73 |
+
ratio = new_dim / original_dim
|
| 74 |
+
print(f"Dimension resize ratio: {ratio:.4f}")
|
| 75 |
+
|
| 76 |
lora_keys_to_process = set()
|
| 77 |
for key in model.keys():
|
| 78 |
if 'lora_' in key and key.endswith('.weight'):
|
|
|
|
| 79 |
base_key = key.split('.lora_')[0]
|
| 80 |
lora_keys_to_process.add(base_key)
|
| 81 |
|
|
|
|
| 84 |
return
|
| 85 |
|
| 86 |
print(f"\nFound {len(lora_keys_to_process)} LoRA modules to resize...")
|
| 87 |
+
print(f"Using '{method}' method for resizing.")
|
| 88 |
|
| 89 |
for base_key in tqdm(sorted(list(lora_keys_to_process)), desc="Resizing modules"):
|
| 90 |
try:
|
| 91 |
down_key, up_key = None, None
|
| 92 |
|
| 93 |
+
# Determine the correct key names for down and up weights
|
| 94 |
if base_key + ".lora_down.weight" in model:
|
| 95 |
down_key = base_key + ".lora_down.weight"
|
| 96 |
up_key = base_key + ".lora_up.weight"
|
|
|
|
| 100 |
else:
|
| 101 |
continue
|
| 102 |
|
| 103 |
+
down_weight = model[down_key]
|
| 104 |
+
up_weight = model[up_key]
|
|
|
|
|
|
|
|
|
|
| 105 |
original_dtype = up_weight.dtype
|
| 106 |
|
| 107 |
+
# Move weights to the selected device for processing
|
| 108 |
+
down_weight = down_weight.to(device, dtype=torch.float32)
|
| 109 |
+
up_weight = up_weight.to(device, dtype=torch.float32)
|
| 110 |
+
|
| 111 |
+
# Handle both linear and convolutional layers
|
| 112 |
conv2d = down_weight.ndim == 4
|
| 113 |
if conv2d:
|
| 114 |
+
conv_shape = down_weight.shape
|
| 115 |
down_weight = down_weight.flatten(1)
|
| 116 |
up_weight = up_weight.flatten(1)
|
| 117 |
|
| 118 |
+
# Reconstruct the full weight matrix
|
| 119 |
full_weight = up_weight @ down_weight
|
| 120 |
|
| 121 |
+
if method == 'svd':
|
| 122 |
+
# --- Full SVD Resizing (Accurate) ---
|
| 123 |
+
U, S, Vh = torch.linalg.svd(full_weight)
|
| 124 |
+
|
| 125 |
+
# Truncate or pad the SVD components to the new dimension
|
| 126 |
+
U = U[:, :new_dim]
|
| 127 |
+
S = S[:new_dim]
|
| 128 |
+
Vh = Vh[:new_dim, :]
|
| 129 |
|
| 130 |
+
# Distribute singular values (S) back to the new matrices
|
| 131 |
+
# A common practice is to take the square root for balanced distribution
|
| 132 |
+
S_sqrt = torch.sqrt(S)
|
| 133 |
+
new_up = U @ torch.diag(S_sqrt)
|
| 134 |
+
new_down = torch.diag(S_sqrt) @ Vh
|
| 135 |
|
| 136 |
+
elif method == 'randomized_svd':
|
| 137 |
+
# --- Randomized SVD Resizing (Fast Approximation) ---
|
| 138 |
+
U, S, V = torch.svd_lowrank(full_weight, q=new_dim)
|
| 139 |
+
Vh = V.T
|
| 140 |
+
|
| 141 |
+
# Distribute singular values like in the full SVD method
|
| 142 |
+
S_sqrt = torch.sqrt(S)
|
| 143 |
+
new_up = U @ torch.diag(S_sqrt)
|
| 144 |
+
new_down = torch.diag(S_sqrt) @ Vh
|
| 145 |
|
|
|
|
| 146 |
if conv2d:
|
| 147 |
+
new_down = new_down.reshape(new_dim, conv_shape[1], conv_shape[2], conv_shape[3])
|
|
|
|
| 148 |
|
| 149 |
+
# Store the new resized weights
|
| 150 |
+
new_model[down_key] = new_down.contiguous().to(original_dtype)
|
| 151 |
+
new_model[up_key] = new_up.contiguous().to(original_dtype)
|
| 152 |
|
| 153 |
+
# --- MODIFICATION START ---
|
| 154 |
+
# If a per-module alpha exists, scale it proportionally.
|
| 155 |
alpha_key = base_key + ".alpha"
|
| 156 |
if alpha_key in model:
|
| 157 |
+
original_alpha_tensor = model[alpha_key]
|
| 158 |
+
# Calculate new alpha and create a new tensor with the same dtype
|
| 159 |
+
new_alpha_value = original_alpha_tensor.item() * ratio
|
| 160 |
+
new_model[alpha_key] = torch.tensor(new_alpha_value, dtype=original_alpha_tensor.dtype)
|
| 161 |
+
# --- MODIFICATION END ---
|
| 162 |
+
|
| 163 |
+
except Exception as e:
|
| 164 |
+
print(f"Warning: Failed to process {base_key}. Error: {e}")
|
| 165 |
continue
|
| 166 |
|
| 167 |
+
# Copy all non-LoRA tensors from the original model
|
| 168 |
for key, value in model.items():
|
| 169 |
if ".lora_" not in key:
|
| 170 |
+
# Ensure we don't copy an old alpha that has already been processed
|
| 171 |
+
if ".alpha" not in key or key not in new_model:
|
| 172 |
+
new_model[key] = value
|
| 173 |
|
| 174 |
+
# Update metadata with the new dimension and the globally scaled alpha
|
| 175 |
new_metadata = {'ss_network_dim': str(new_dim)}
|
| 176 |
+
new_alpha = alpha * ratio
|
| 177 |
+
new_metadata['ss_network_alpha'] = str(new_alpha)
|
| 178 |
+
print(f"\nNew global alpha scaled to: {new_alpha:.2f}")
|
| 179 |
+
|
| 180 |
+
# Move all tensors to CPU before saving
|
| 181 |
+
if device != 'cpu':
|
| 182 |
+
print("\nMoving processed tensors to CPU for saving...")
|
| 183 |
+
for key in tqdm(new_model.keys(), desc="Finalizing"):
|
| 184 |
+
if isinstance(new_model[key], torch.Tensor):
|
| 185 |
+
new_model[key] = new_model[key].cpu()
|
| 186 |
|
| 187 |
print(f"\nSaving resized model to: {output_path}")
|
| 188 |
save_file(new_model, output_path, metadata=new_metadata)
|
| 189 |
+
print("Done! 🎉")
|
| 190 |
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
parser = argparse.ArgumentParser(
|
| 194 |
+
description="Resize a LoRA model to a new dimension and scales alpha proportionally.",
|
| 195 |
formatter_class=argparse.RawTextHelpFormatter
|
| 196 |
)
|
| 197 |
parser.add_argument("model_path", type=str, help="Path to the LoRA model (.safetensors).")
|
|
|
|
| 199 |
parser.add_argument("new_dim", type=int, help="The new LoRA dimension (rank).")
|
| 200 |
parser.add_argument("--device", type=str, default=None,
|
| 201 |
help="Device to use (e.g., 'cpu', 'cuda'). Autodetects if not specified.")
|
| 202 |
+
parser.add_argument(
|
| 203 |
+
"--method",
|
| 204 |
+
type=str,
|
| 205 |
+
default="svd",
|
| 206 |
+
choices=["svd", "randomized_svd"],
|
| 207 |
+
help="""Resizing method:
|
| 208 |
+
'svd' (default): Accurate but slower. Uses full SVD for optimal weight preservation.
|
| 209 |
+
'randomized_svd': Faster approximation of SVD. Excellent for speed on large models."""
|
| 210 |
+
)
|
| 211 |
|
| 212 |
args = parser.parse_args()
|
| 213 |
|
|
|
|
| 218 |
|
| 219 |
print(f"Using device: {device}")
|
| 220 |
|
| 221 |
+
resize_lora_model(args.model_path, args.output_path, args.new_dim, device, args.method)
|
|
|