import torch import argparse from safetensors.torch import load_file, save_file from tqdm import tqdm import os def slerp(t1, t2, alpha): """ Performs Spherical Linear Interpolation (SLERP) between two tensors. """ # Ensure tensors are float32 for high precision calculations t1_float = t1.float() t2_float = t2.float() # Flatten tensors to treat them as vectors t1_flat = t1_float.flatten() t2_flat = t2_float.flatten() # Calculate the dot product between the normalized vectors dot = torch.sum(t1_flat * t2_flat) / (torch.linalg.norm(t1_flat) * torch.linalg.norm(t2_flat)) # Clamp the dot product to the valid range [-1.0, 1.0] to avoid numerical errors dot = torch.clamp(dot, -1.0, 1.0) # Calculate the angle between the vectors theta = torch.acos(dot) # If the angle is very small, the tensors are nearly parallel. # In this case, linear interpolation (LERP) is a good and stable approximation. if torch.abs(theta) < 1e-4: return torch.lerp(t1, t2, alpha) sin_theta = torch.sin(theta) # SLERP formula factor1 = torch.sin((1.0 - alpha) * theta) / sin_theta factor2 = torch.sin(alpha * theta) / sin_theta # Interpolate the flattened tensors interp_flat = factor1 * t1_flat + factor2 * t2_flat # Reshape the result to the original tensor shape and cast back to the original dtype return interp_flat.reshape(t1.shape).to(t1.dtype) def lerp(t1, t2, alpha): """ Performs Linear Interpolation (LERP) between two tensors. """ return torch.lerp(t1, t2, alpha) def main(): parser = argparse.ArgumentParser(description="Merge two Safetensor models using either Linear (LERP) or Spherical (SLERP) interpolation.") parser.add_argument("model_a", type=str, help="Path to the first model (A).") parser.add_argument("model_b", type=str, help="Path to the second model (B).") parser.add_argument("output", type=str, help="Path to save the merged model.") parser.add_argument("--alpha", type=float, default=0.5, help="Interpolation factor (alpha). 0.0 is 100%% model A, 1.0 is 100%% model B. Default is 0.5.") parser.add_argument("--method", type=str, default="lerp", choices=["lerp", "slerp"], help="Merge method to use: 'lerp' (linear) or 'slerp' (spherical). Default is 'lerp'.") args = parser.parse_args() if not os.path.exists(args.model_a): print(f"Error: Model file not found at {args.model_a}") return if not os.path.exists(args.model_b): print(f"Error: Model file not found at {args.model_b}") return print(f"Loading model A from: {args.model_a}") tensors_a = load_file(args.model_a) print(f"Loading model B from: {args.model_b}") tensors_b = load_file(args.model_b) merged_tensors = {} # Find common and unique keys keys_a = set(tensors_a.keys()) keys_b = set(tensors_b.keys()) common_keys = keys_a.intersection(keys_b) keys_only_in_a = keys_a - keys_b keys_only_in_b = keys_b - keys_a print(f"\nFound {len(keys_a)} keys in {args.model_a}.") print(f"Found {len(keys_b)} keys in {args.model_b}.") print(f"-> Found {len(common_keys)} common keys.") print(f"-> Found {len(keys_only_in_a)} keys unique to model A.") print(f"-> Found {len(keys_only_in_b)} keys unique to model B.\n") if not common_keys and not keys_only_in_a and not keys_only_in_b: print("Warning: No tensors found to merge or copy. The output file will be empty.") save_file({}, args.output) print("Operation complete.") return print(f"Merging {len(common_keys)} common layers with alpha={args.alpha} using {args.method.upper()}...") for key in tqdm(common_keys, desc="Merging common layers"): if tensors_a[key].shape != tensors_b[key].shape: print(f"Warning: Skipping layer '{key}' due to shape mismatch: {tensors_a[key].shape} vs {tensors_b[key].shape}") merged_tensors[key] = tensors_a[key] continue tensor_a = tensors_a[key] tensor_b = tensors_b[key] if not tensor_a.is_floating_point(): print(f"Warning: Skipping merge for non-floating point tensor '{key}' (dtype: {tensor_a.dtype}). Copying from model A.") merged_tensors[key] = tensor_a continue if args.method == "slerp": merged_tensors[key] = slerp(tensor_a, tensor_b, args.alpha) else: # Default to lerp merged_tensors[key] = lerp(tensor_a, tensor_b, args.alpha) # Copy unique layers if keys_only_in_a: print(f"Copying {len(keys_only_in_a)} layers unique to model A...") for key in tqdm(keys_only_in_a, desc="Copying layers from A"): merged_tensors[key] = tensors_a[key] if keys_only_in_b: print(f"Copying {len(keys_only_in_b)} layers unique to model B...") for key in tqdm(keys_only_in_b, desc="Copying layers from B"): merged_tensors[key] = tensors_b[key] print(f"\nSaving merged model to: {args.output}") save_file(merged_tensors, args.output) print("Merge complete!") if __name__ == "__main__": main()