 
			
		Update README.md and config.json, and add aragpt2-large model to ARAGPT2_PRETRAINED_MODEL_ARCHIVE_LIST
		18d0924
		
		| # coding=utf-8 | |
| """PyTorch AraGPT2 model.""" | |
| import math | |
| import os | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.cuda.amp import autocast | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutputWithPast, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel, SequenceSummary | |
| from transformers.pytorch_utils import ( | |
| Conv1D, | |
| find_pruneable_heads_and_indices, | |
| prune_conv1d_layer, | |
| ) | |
| from transformers.utils import ( | |
| ModelOutput, | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
| from .configuration_aragpt2 import AraGPT2Config | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "aubmindlab/aragpt2-mega" | |
| _CONFIG_FOR_DOC = "AraGPT2Config" | |
| _TOKENIZER_FOR_DOC = "GPT2Tokenizer" | |
| ARAGPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "aubmindlab/aragpt2-large", | |
| "aubmindlab/aragpt2-mega", | |
| # See all AraGPT2 models at https://huggingface.co/models?filter=aragpt2 | |
| ] | |
| _ARAGPT2_ML_TF_TO_TORCH = { | |
| "LayerNorm_embed_norm": "emb_norm", | |
| "pos_embed": "wpe.weight", | |
| "word_embed": "wte.weight", | |
| "layer": "h", | |
| # Most importently This two layer norm must be put on the same position as gpt2-ml | |
| # or generated data is bad, just repeat the last token | |
| "LayerNorm_mlp_ln0": "ln_1", | |
| "LayerNorm_mlp_ln1": "ln_2", | |
| "intermediate": "mlp.c_fc", | |
| "output": "mlp.c_proj", | |
| "query_layer": "attn.c_attn", | |
| "key_layer": "attn.c_attn", | |
| "value_layer": "attn.c_attn", | |
| "context_projection_layer": "attn.c_proj", | |
| "gamma": "weight", | |
| "kernel": "weight", | |
| "beta": "bias", | |
| "bias": "bias", | |
| } | |
| WEIGHTS_NAME = "pytorch_model.bin" | |
| CONFIG_NAME = "config.json" | |
| def convert_gpt2_checkpoint_to_pytorch( | |
| aragpt2_checkpoint_path, aragpt2_config_file, pytorch_dump_folder_path | |
| ): | |
| # Construct model | |
| if aragpt2_config_file == "": | |
| config = AraGPT2Config() | |
| else: | |
| config = AraGPT2Config.from_json_file(aragpt2_config_file) | |
| model = AraGPT2Model(config) | |
| # Load weights from numpy | |
| load_tf_weights_in_aragpt2(model, config, aragpt2_checkpoint_path) | |
| # Save pytorch-model | |
| pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME | |
| pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME | |
| print("Save PyTorch model to {}".format(pytorch_weights_dump_path)) | |
| torch.save(model.state_dict(), pytorch_weights_dump_path) | |
| print("Save configuration file to {}".format(pytorch_config_dump_path)) | |
| with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: | |
| f.write(config.to_json_string()) | |
| # XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './') | |
| # https://github.com/tensorflow/models/issues/2675#issuecomment-516595597 | |
| def load_tf_weights_in_aragpt2(model, config, aragpt2_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model""" | |
| try: | |
| import re | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(aragpt2_checkpoint_path) | |
| logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array.squeeze()) | |
| import copy | |
| orig_model = copy.deepcopy(model) | |
| for name, array in zip(names, arrays): | |
| name = name[6:] # skip "model/" | |
| name = name.split("/") | |
| pointer = model | |
| attn_layer = "" | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+\d+", m_name): | |
| scope_names = re.split(r"(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| sname = scope_names[0] | |
| if sname == "" or sname == "embeddings": | |
| continue | |
| elif sname not in _ARAGPT2_ML_TF_TO_TORCH: | |
| print("=========================================================") | |
| logger.info("Skip var name {}".format(scope_names)) | |
| pointer = None | |
| break | |
| else: | |
| tname = _ARAGPT2_ML_TF_TO_TORCH[sname] | |
| if "." in tname: | |
| parent, child = tname.split(".") | |
| pointer = getattr(pointer, parent) | |
| pointer = getattr(pointer, child) | |
| else: | |
| pointer = getattr(pointer, tname) | |
| if tname == "attn.c_attn": | |
| attn_layer = sname | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| if pointer is None: | |
| continue | |
| if attn_layer == "": | |
| try: | |
| assert pointer.shape == array.shape | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info( | |
| "Initialize PyTorch weight {}, {}, {}".format( | |
| name, array.mean(), pointer.mean() | |
| ) | |
| ) | |
| if attn_layer == "": | |
| pointer.data = torch.from_numpy(array) | |
| else: | |
| shape = pointer.shape | |
| d = torch.from_numpy(array) | |
| is_bias = len(shape) == 1 | |
| end = int(shape[0 if is_bias else 1] / 3) | |
| m = dict( | |
| query_layer=0, | |
| key_layer=end, | |
| value_layer=end * 2, | |
| ) | |
| start = m[attn_layer] | |
| end = start + end | |
| if is_bias: | |
| pointer.data[start:end] = d | |
| else: | |
| pointer.data[:, start:end] = d | |
| logger.info( | |
| "Initialize PyTorch weight {}, {}, {}".format( | |
| name, array.mean(), pointer.mean() | |
| ) | |
| ) | |
| for name, params in orig_model.named_parameters(): | |
| for n, p in model.named_parameters(): | |
| if name == n: | |
| if params.equal(p): | |
| print("--------------------------") | |
| print(" %s not changed!" % n) | |
| return model | |
| class AraGPT2Attention(nn.Module): | |
| def __init__(self, config, is_cross_attention=False, layer_idx=None): | |
| super().__init__() | |
| max_positions = config.max_position_embeddings | |
| self.register_buffer( | |
| "bias", | |
| torch.tril( | |
| torch.ones((max_positions, max_positions), dtype=torch.bool) | |
| ).view(1, 1, max_positions, max_positions), | |
| persistent=False, | |
| ) | |
| self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| self.split_size = self.embed_dim | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale_attn_weights = config.scale_attn_weights | |
| self.is_cross_attention = is_cross_attention | |
| # Layer-wise attention scaling, reordering, and upcasting | |
| self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx | |
| self.layer_idx = layer_idx | |
| self.reorder_and_upcast_attn = config.reorder_and_upcast_attn | |
| if self.is_cross_attention: | |
| self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) | |
| self.q_attn = Conv1D(self.embed_dim, self.embed_dim) | |
| else: | |
| self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) | |
| self.c_proj = Conv1D(self.embed_dim, self.embed_dim) | |
| self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
| self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.num_heads, self.head_dim, self.pruned_heads | |
| ) | |
| index_attn = torch.cat( | |
| [index, index + self.split_size, index + (2 * self.split_size)] | |
| ) | |
| # Prune conv1d layers | |
| self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
| self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
| # Update hyper params | |
| self.split_size = (self.split_size // self.num_heads) * ( | |
| self.num_heads - len(heads) | |
| ) | |
| self.num_heads = self.num_heads - len(heads) | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def _attn(self, query, key, value, attention_mask=None, head_mask=None): | |
| attn_weights = torch.matmul(query, key.transpose(-1, -2)) | |
| if self.scale_attn_weights: | |
| attn_weights = attn_weights / torch.full( | |
| [], | |
| value.size(-1) ** 0.5, | |
| dtype=attn_weights.dtype, | |
| device=attn_weights.device, | |
| ) | |
| # Layer-wise attention scaling | |
| if self.scale_attn_by_inverse_layer_idx: | |
| attn_weights = attn_weights / float(self.layer_idx + 1) | |
| if not self.is_cross_attention: | |
| # if only "normal" attention layer implements causal mask | |
| query_length, key_length = query.size(-2), key.size(-2) | |
| causal_mask = self.bias[ | |
| :, :, key_length - query_length : key_length, :key_length | |
| ] | |
| mask_value = torch.finfo(attn_weights.dtype).min | |
| # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
| # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
| mask_value = torch.full( | |
| [], mask_value, dtype=attn_weights.dtype, device=attn_weights.device | |
| ) | |
| attn_weights = torch.where( | |
| causal_mask, attn_weights.to(attn_weights.dtype), mask_value | |
| ) | |
| if attention_mask is not None: | |
| # Apply the attention mask | |
| attn_weights = attn_weights + attention_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise | |
| attn_weights = attn_weights.type(value.dtype) | |
| attn_weights = self.attn_dropout(attn_weights) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attn_weights = attn_weights * head_mask | |
| attn_output = torch.matmul(attn_weights, value) | |
| return attn_output, attn_weights | |
| def _upcast_and_reordered_attn( | |
| self, query, key, value, attention_mask=None, head_mask=None | |
| ): | |
| # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) | |
| bsz, num_heads, q_seq_len, dk = query.size() | |
| _, _, k_seq_len, _ = key.size() | |
| # Preallocate attn_weights for `baddbmm` | |
| attn_weights = torch.empty( | |
| bsz * num_heads, | |
| q_seq_len, | |
| k_seq_len, | |
| dtype=torch.float32, | |
| device=query.device, | |
| ) | |
| # Compute Scale Factor | |
| scale_factor = 1.0 | |
| if self.scale_attn_weights: | |
| scale_factor /= float(value.size(-1)) ** 0.5 | |
| if self.scale_attn_by_inverse_layer_idx: | |
| scale_factor /= float(self.layer_idx + 1) | |
| # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) | |
| with autocast(enabled=False): | |
| q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape( | |
| -1, dk, k_seq_len | |
| ) | |
| attn_weights = torch.baddbmm( | |
| attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor | |
| ) | |
| attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) | |
| if not self.is_cross_attention: | |
| # if only "normal" attention layer implements causal mask | |
| query_length, key_length = query.size(-2), key.size(-2) | |
| causal_mask = self.bias[ | |
| :, :, key_length - query_length : key_length, :key_length | |
| ] | |
| mask_value = torch.finfo(attn_weights.dtype).min | |
| # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
| # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
| mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to( | |
| attn_weights.device | |
| ) | |
| attn_weights = torch.where(causal_mask, attn_weights, mask_value) | |
| if attention_mask is not None: | |
| # Apply the attention mask | |
| attn_weights = attn_weights + attention_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise | |
| if attn_weights.dtype != torch.float32: | |
| raise RuntimeError( | |
| "Error with upcasting, attn_weights does not have dtype torch.float32" | |
| ) | |
| attn_weights = attn_weights.type(value.dtype) | |
| attn_weights = self.attn_dropout(attn_weights) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attn_weights = attn_weights * head_mask | |
| attn_output = torch.matmul(attn_weights, value) | |
| return attn_output, attn_weights | |
| def _split_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Splits hidden_size dim into attn_head_size and num_heads | |
| """ | |
| new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | |
| tensor = tensor.view(new_shape) | |
| return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
| def _merge_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Merges attn_head_size dim and num_attn_heads dim into hidden_size | |
| """ | |
| tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
| new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | |
| return tensor.view(new_shape) | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: | |
| if encoder_hidden_states is not None: | |
| if not hasattr(self, "q_attn"): | |
| raise ValueError( | |
| "If class is used as cross attention, the weights `q_attn` have to be defined. " | |
| "Please make sure to instantiate class with `AraGPT2Attention(..., is_cross_attention=True)`." | |
| ) | |
| query = self.q_attn(hidden_states) | |
| key, value = self.c_attn(encoder_hidden_states).split( | |
| self.split_size, dim=2 | |
| ) | |
| attention_mask = encoder_attention_mask | |
| else: | |
| query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) | |
| query = self._split_heads(query, self.num_heads, self.head_dim) | |
| key = self._split_heads(key, self.num_heads, self.head_dim) | |
| value = self._split_heads(value, self.num_heads, self.head_dim) | |
| if layer_past is not None: | |
| past_key, past_value = layer_past | |
| key = torch.cat((past_key, key), dim=-2) | |
| value = torch.cat((past_value, value), dim=-2) | |
| if use_cache is True: | |
| present = (key, value) | |
| else: | |
| present = None | |
| if self.reorder_and_upcast_attn: | |
| attn_output, attn_weights = self._upcast_and_reordered_attn( | |
| query, key, value, attention_mask, head_mask | |
| ) | |
| else: | |
| attn_output, attn_weights = self._attn( | |
| query, key, value, attention_mask, head_mask | |
| ) | |
| attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) | |
| attn_output = self.c_proj(attn_output) | |
| attn_output = self.resid_dropout(attn_output) | |
| outputs = (attn_output, present) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs # a, present, (attentions) | |
| class AraGPT2MLP(nn.Module): | |
| def __init__(self, intermediate_size, config): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.c_fc = Conv1D(intermediate_size, embed_dim) | |
| self.c_proj = Conv1D(embed_dim, intermediate_size) | |
| self.act = ACT2FN[config.activation_function] | |
| self.dropout = nn.Dropout(config.resid_pdrop) | |
| def forward( | |
| self, hidden_states: Optional[Tuple[torch.FloatTensor]] | |
| ) -> torch.FloatTensor: | |
| hidden_states = self.c_fc(hidden_states) | |
| hidden_states = self.act(hidden_states) | |
| hidden_states = self.c_proj(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| class AraGPT2Block(nn.Module): | |
| def __init__(self, config, layer_idx=None): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
| self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.attn = AraGPT2Attention(config, layer_idx=layer_idx) | |
| self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| if config.add_cross_attention: | |
| self.crossattention = AraGPT2Attention( | |
| config, is_cross_attention=True, layer_idx=layer_idx | |
| ) | |
| self.ln_cross_attn = nn.LayerNorm( | |
| hidden_size, eps=config.layer_norm_epsilon | |
| ) | |
| self.mlp = AraGPT2MLP(inner_dim, config) | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[ | |
| Tuple[torch.Tensor], | |
| Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]], | |
| ]: | |
| # removed in GROVER | |
| # residual = hidden_states | |
| # hidden_states = self.ln_1(hidden_states) | |
| attn_outputs = self.attn( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
| outputs = attn_outputs[1:] | |
| # residual connection | |
| hidden_states = attn_output + hidden_states | |
| if encoder_hidden_states is not None: | |
| # add one self-attention block for cross-attention | |
| if not hasattr(self, "crossattention"): | |
| raise ValueError( | |
| f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " | |
| "cross-attention layers by setting `config.add_cross_attention=True`" | |
| ) | |
| # removed in GROVER | |
| # residual = hidden_states | |
| # hidden_states = self.ln_cross_attn(hidden_states) | |
| cross_attn_outputs = self.crossattention( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = cross_attn_outputs[0] | |
| # residual connection | |
| hidden_states = attn_output + hidden_states | |
| outputs = ( | |
| outputs + cross_attn_outputs[2:] | |
| ) # add cross attentions if we output attention weights | |
| residual = hidden_states | |
| hidden_states = self.ln_1(hidden_states) | |
| feed_forward_hidden_states = self.mlp(hidden_states) | |
| # residual connection | |
| hidden_states = residual + feed_forward_hidden_states | |
| hidden_states = self.ln_2(hidden_states) # Added in GROVER | |
| if use_cache: | |
| outputs = (hidden_states,) + outputs | |
| else: | |
| outputs = (hidden_states,) + outputs[1:] | |
| return outputs # hidden_states, present, (attentions, cross_attentions) | |
| class AraGPT2PreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = AraGPT2Config | |
| load_tf_weights = load_tf_weights_in_aragpt2 | |
| base_model_prefix = "transformer" | |
| is_parallelizable = True | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["AraGPT2Block"] | |
| _skip_keys_device_placement = "past_key_values" | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module): | |
| """Initialize the weights.""" | |
| if isinstance(module, (nn.Linear, Conv1D)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
| # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
| # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
| # > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
| # | |
| # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
| for name, p in module.named_parameters(): | |
| if "c_proj" in name and "weight" in name: | |
| # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
| p.data.normal_( | |
| mean=0.0, | |
| std=( | |
| self.config.initializer_range | |
| / math.sqrt(2 * self.config.n_layer) | |
| ), | |
| ) | |
| class AraGPT2DoubleHeadsModelOutput(ModelOutput): | |
| """ | |
| Base class for outputs of models predicting if two sentences are consecutive or not. | |
| Args: | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
| Language modeling loss. | |
| mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): | |
| Multiple choice classification loss. | |
| logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): | |
| Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, | |
| sequence_length, embed_size_per_head)`). | |
| Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see | |
| `past_key_values` input) to speed up sequential decoding. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
| shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| GPT2Attentions weights after the attention softmax, used to compute the weighted average in the | |
| self-attention heads. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| mc_loss: Optional[torch.FloatTensor] = None | |
| logits: torch.FloatTensor = None | |
| mc_logits: torch.FloatTensor = None | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| AraGPT2_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`AraGPT2Config`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| GPT2_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
| `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
| sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for | |
| `past_key_values`. In other words, the `attention_mask` always has to have the length: | |
| `len(past_key_values) + len(input_ids)` | |
| [What are attention masks?](../glossary#attention-mask) | |
| token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
| 1]`: | |
| - 0 corresponds to a *sentence A* token, | |
| - 1 corresponds to a *sentence B* token. | |
| [What are token type IDs?](../glossary#token-type-ids) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| PARALLELIZE_DOCSTRING = r""" | |
| This is an experimental feature and is a subject to change at a moment's notice. | |
| Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
| it will evenly distribute blocks across all devices. | |
| Args: | |
| device_map (`Dict[int, list]`, optional, defaults to None): | |
| A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
| automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
| have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the | |
| following number of attention modules: | |
| - aubmindlab/aragpt2-mega: 48 | |
| Example: | |
| ```python | |
| # Here is an example of a device map on a machine with 4 GPUs using aubmindlab/aragpt2-mega, which has a total of 48 attention modules: | |
| model = AraGPT2LMHeadModel.from_pretrained("aubmindlab/aragpt2-mega") | |
| device_map = { | |
| 0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | |
| 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | |
| 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | |
| 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], | |
| } | |
| model.parallelize(device_map) | |
| ``` | |
| """ | |
| DEPARALLELIZE_DOCSTRING = r""" | |
| Moves the model to cpu from a model parallel state. | |
| Example: | |
| ```python | |
| # On a 4 GPU machine with aubmindlab/aragpt2-mega: | |
| model = AraGPT2LMHeadModel.from_pretrained("aubmindlab/aragpt2-mega") | |
| device_map = { | |
| 0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | |
| 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | |
| 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | |
| 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], | |
| } | |
| model.parallelize(device_map) # Splits the model across several devices | |
| model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
| ``` | |
| """ | |
| class AraGPT2Model(AraGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = ["attn.masked_bias"] | |
| _keys_to_ignore_on_load_missing = ["attn.masked_bias"] | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| self.embed_dim = config.hidden_size | |
| self.wte = nn.Embedding(config.vocab_size, self.embed_dim) | |
| self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) | |
| self.emb_norm = nn.LayerNorm( | |
| config.n_embd, eps=config.layer_norm_epsilon | |
| ) # Added in GROVER | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| self.h = nn.ModuleList( | |
| [AraGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)] | |
| ) | |
| # Removed in GROVER | |
| # self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def parallelize(self, device_map=None): | |
| # Check validity of device_map | |
| warnings.warn( | |
| "`AraGPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" | |
| " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
| " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," | |
| " ...}", | |
| FutureWarning, | |
| ) | |
| self.device_map = ( | |
| get_device_map(len(self.h), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.h)) | |
| self.model_parallel = True | |
| self.first_device = ( | |
| "cpu" | |
| if "cpu" in self.device_map.keys() | |
| else "cuda:" + str(min(self.device_map.keys())) | |
| ) | |
| self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
| self.wte = self.wte.to(self.first_device) | |
| self.wpe = self.wpe.to(self.first_device) | |
| # Added in GROVER | |
| # Wissam: not sure if it is fine being on cpu or Better on GPU | |
| self.emb_norm = self.emb_norm.to( | |
| "cuda:" + str(min(self.device_map.keys())) | |
| ) # GPU | |
| # self.emb_norm = self.emb_norm.to(self.first_device) # CPU | |
| # Load onto devices | |
| for k, v in self.device_map.items(): | |
| for block in v: | |
| cuda_device = "cuda:" + str(k) | |
| self.h[block] = self.h[block].to(cuda_device) | |
| # ln_f to last | |
| # Removed in GROVER | |
| # self.ln_f = self.ln_f.to(self.last_device) | |
| def deparallelize(self): | |
| warnings.warn( | |
| "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
| FutureWarning, | |
| ) | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.first_device = "cpu" | |
| self.last_device = "cpu" | |
| self.wte = self.wte.to("cpu") | |
| self.wpe = self.wpe.to("cpu") | |
| # Added in GROVER | |
| self.emb_norm = self.emb_norm.to("cpu") | |
| for index in range(len(self.h)): | |
| self.h[index] = self.h[index].to("cpu") | |
| # Removed in GROVER | |
| # self.ln_f = self.ln_f.to("cpu") | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.wte | |
| def set_input_embeddings(self, new_embeddings): | |
| self.wte = new_embeddings | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.h[layer].attn.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time" | |
| ) | |
| elif input_ids is not None: | |
| self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| batch_size = input_ids.shape[0] | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| batch_size = inputs_embeds.shape[0] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
| if past_key_values is None: | |
| past_length = 0 | |
| past_key_values = tuple([None] * len(self.h)) | |
| else: | |
| past_length = past_key_values[0][0].size(-2) | |
| if position_ids is None: | |
| position_ids = torch.arange( | |
| past_length, | |
| input_shape[-1] + past_length, | |
| dtype=torch.long, | |
| device=device, | |
| ) | |
| position_ids = position_ids.unsqueeze(0) | |
| # AraGPT2Attention mask. | |
| if attention_mask is not None: | |
| if batch_size <= 0: | |
| raise ValueError("batch_size has to be defined and > 0") | |
| attention_mask = attention_mask.view(batch_size, -1) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| attention_mask = attention_mask[:, None, None, :] | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and the dtype's smallest value for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
| attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.config.add_cross_attention and encoder_hidden_states is not None: | |
| encoder_batch_size, encoder_sequence_length, _ = ( | |
| encoder_hidden_states.size() | |
| ) | |
| encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
| if encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
| encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
| else: | |
| encoder_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # head_mask has shape n_layer x batch x n_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.wte(input_ids) | |
| position_embeds = self.wpe(position_ids) | |
| hidden_states = inputs_embeds + position_embeds | |
| if token_type_ids is not None: | |
| token_type_embeds = self.wte(token_type_ids) | |
| hidden_states = hidden_states + token_type_embeds | |
| hidden_states = self.drop(hidden_states) | |
| # Added in Grover | |
| hidden_states = self.emb_norm(hidden_states) | |
| output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_cross_attentions = ( | |
| () if output_attentions and self.config.add_cross_attention else None | |
| ) | |
| all_hidden_states = () if output_hidden_states else None | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(hidden_states.device) | |
| # Ensure layer_past is on same device as hidden_states (might not be correct) | |
| if layer_past is not None: | |
| layer_past = tuple( | |
| past_state.to(hidden_states.device) for past_state in layer_past | |
| ) | |
| # Ensure that attention_mask is always on the same device as hidden_states | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if isinstance(head_mask, torch.Tensor): | |
| head_mask = head_mask.to(hidden_states.device) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| outputs = self._gradient_checkpointing_func( | |
| block.__call__, | |
| hidden_states, | |
| None, | |
| attention_mask, | |
| head_mask[i], | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| use_cache, | |
| output_attentions, | |
| ) | |
| else: | |
| outputs = block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask[i], | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + ( | |
| outputs[2 if use_cache else 1], | |
| ) | |
| if self.config.add_cross_attention: | |
| all_cross_attentions = all_cross_attentions + ( | |
| outputs[3 if use_cache else 2], | |
| ) | |
| # Model Parallel: If it's the last layer for that device, put things on the next device | |
| if self.model_parallel: | |
| for k, v in self.device_map.items(): | |
| if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
| hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
| # Removed in Grover | |
| # hidden_states = self.ln_f(hidden_states) | |
| hidden_states = hidden_states.view(output_shape) | |
| # Add last hidden state | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| presents, | |
| all_hidden_states, | |
| all_self_attentions, | |
| all_cross_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class AraGPT2LMHeadModel(AraGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"attn.masked_bias", | |
| r"attn.bias", | |
| r"lm_head.weight", | |
| ] | |
| _keys_to_ignore_on_load_missing = [ | |
| r"attn.masked_bias", | |
| r"attn.bias", | |
| r"lm_head.weight", | |
| ] | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| self.transformer = AraGPT2Model(config) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def parallelize(self, device_map=None): | |
| warnings.warn( | |
| "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" | |
| " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
| " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" | |
| " 0, 'transformer.h.1': 1, ...}", | |
| FutureWarning, | |
| ) | |
| self.device_map = ( | |
| get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.transformer.h)) | |
| self.transformer.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.transformer.first_device) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| warnings.warn( | |
| "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
| FutureWarning, | |
| ) | |
| self.transformer.deparallelize() | |
| self.transformer = self.transformer.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| torch.cuda.empty_cache() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs | |
| ): | |
| token_type_ids = kwargs.get("token_type_ids", None) | |
| # Omit tokens covered by past_key_values | |
| if past_key_values: | |
| past_length = past_key_values[0][0].shape[2] | |
| # Some generation methods already pass only the last input ID | |
| if input_ids.shape[1] > past_length: | |
| remove_prefix_length = past_length | |
| else: | |
| # Default to old behavior: keep only final ID | |
| remove_prefix_length = input_ids.shape[1] - 1 | |
| input_ids = input_ids[:, remove_prefix_length:] | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids[:, -input_ids.shape[1] :] | |
| attention_mask = kwargs.get("attention_mask", None) | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| else: | |
| position_ids = None | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "position_ids": position_ids, | |
| "attention_mask": attention_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| ) | |
| return model_inputs | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.transformer.first_device) | |
| hidden_states = hidden_states.to(self.lm_head.weight.device) | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(lm_logits.device) | |
| # Shift so that tokens < n predict n | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) | |
| ) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| cross_attentions=transformer_outputs.cross_attentions, | |
| ) | |
| def _reorder_cache( | |
| past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
| ) -> Tuple[Tuple[torch.Tensor]]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| """ | |
| return tuple( | |
| tuple( | |
| past_state.index_select(0, beam_idx.to(past_state.device)) | |
| for past_state in layer_past | |
| ) | |
| for layer_past in past_key_values | |
| ) | |
| class AraGPT2DoubleHeadsModel(AraGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"attn.masked_bias", | |
| r"attn.bias", | |
| r"lm_head.weight", | |
| ] | |
| _keys_to_ignore_on_load_missing = [ | |
| r"attn.masked_bias", | |
| r"attn.bias", | |
| r"lm_head.weight", | |
| ] | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| config.num_labels = 1 | |
| self.transformer = AraGPT2Model(config) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.multiple_choice_head = SequenceSummary(config) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def parallelize(self, device_map=None): | |
| warnings.warn( | |
| "`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should" | |
| " load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your" | |
| " own `device_map` but it needs to be a dictionary module_name to device, so for instance" | |
| " {'transformer.h.0': 0, 'transformer.h.1': 1, ...}", | |
| FutureWarning, | |
| ) | |
| self.device_map = ( | |
| get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.transformer.h)) | |
| self.transformer.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.transformer.first_device) | |
| self.multiple_choice_head = self.multiple_choice_head.to( | |
| self.transformer.first_device | |
| ) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| warnings.warn( | |
| "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
| FutureWarning, | |
| ) | |
| self.transformer.deparallelize() | |
| self.transformer = self.transformer.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.multiple_choice_head = self.multiple_choice_head.to("cpu") | |
| self.model_parallel = False | |
| torch.cuda.empty_cache() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): | |
| token_type_ids = kwargs.get("token_type_ids", None) | |
| # Omit tokens covered by past_key_values | |
| if past_key_values: | |
| past_length = past_key_values[0][0].shape[2] | |
| # Some generation methods already pass only the last input ID | |
| if input_ids.shape[1] > past_length: | |
| remove_prefix_length = past_length | |
| else: | |
| # Default to old behavior: keep only final ID | |
| remove_prefix_length = input_ids.shape[1] - 1 | |
| input_ids = input_ids[:, remove_prefix_length:] | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids[:, -input_ids.shape[1] :] | |
| attention_mask = kwargs.get("attention_mask", None) | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| else: | |
| position_ids = None | |
| return { | |
| "input_ids": input_ids, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "position_ids": position_ids, | |
| "attention_mask": attention_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| mc_token_ids: Optional[torch.LongTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| mc_labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **kwargs, | |
| ) -> Union[Tuple, AraGPT2DoubleHeadsModelOutput]: | |
| r""" | |
| mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): | |
| Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - | |
| 1]`. | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to | |
| `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]` | |
| mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): | |
| Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` | |
| where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) | |
| Return: | |
| Example: | |
| ```python | |
| >>> import torch | |
| >>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel | |
| >>> tokenizer = GPT2Tokenizer.from_pretrained("aubmindlab/aragpt2-mega") | |
| >>> model = GPT2DoubleHeadsModel.from_pretrained("aubmindlab/aragpt2-mega") | |
| >>> # Add a [CLS] to the vocabulary (we should train it also!) | |
| >>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"}) | |
| >>> # Update the model embeddings with the new vocabulary size | |
| >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) | |
| >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
| >>> encoded_choices = [tokenizer.encode(s) for s in choices] | |
| >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] | |
| >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 | |
| >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 | |
| >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
| >>> lm_logits = outputs.logits | |
| >>> mc_logits = outputs.mc_logits | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.transformer.first_device) | |
| hidden_states = hidden_states.to(self.lm_head.weight.device) | |
| lm_logits = self.lm_head(hidden_states) | |
| mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) | |
| mc_loss = None | |
| if mc_labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| mc_loss = loss_fct( | |
| mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1) | |
| ) | |
| lm_loss = None | |
| if labels is not None: | |
| labels = labels.to(lm_logits.device) | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| loss_fct = CrossEntropyLoss() | |
| lm_loss = loss_fct( | |
| shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) | |
| ) | |
| if not return_dict: | |
| output = (lm_logits, mc_logits) + transformer_outputs[1:] | |
| if mc_loss is not None: | |
| output = (mc_loss,) + output | |
| return ((lm_loss,) + output) if lm_loss is not None else output | |
| return AraGPT2DoubleHeadsModelOutput( | |
| loss=lm_loss, | |
| mc_loss=mc_loss, | |
| logits=lm_logits, | |
| mc_logits=mc_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def _reorder_cache( | |
| past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
| ) -> Tuple[Tuple[torch.Tensor]]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| """ | |
| return tuple( | |
| tuple( | |
| past_state.index_select(0, beam_idx.to(past_state.device)) | |
| for past_state in layer_past | |
| ) | |
| for layer_past in past_key_values | |
| ) | |
| class AraGPT2ForSequenceClassification(AraGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"h\.\d+\.attn\.masked_bias", | |
| r"lm_head.weight", | |
| ] | |
| _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"] | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = AraGPT2Model(config) | |
| self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size, sequence_length = input_ids.shape[:2] | |
| else: | |
| batch_size, sequence_length = inputs_embeds.shape[:2] | |
| assert ( | |
| self.config.pad_token_id is not None or batch_size == 1 | |
| ), "Cannot handle batch sizes > 1 if no padding token is defined." | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
| sequence_lengths = ( | |
| torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
| ) | |
| sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
| sequence_lengths = sequence_lengths.to(logits.device) | |
| else: | |
| sequence_lengths = -1 | |
| logger.warning( | |
| f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
| "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
| ) | |
| pooled_logits = logits[ | |
| torch.arange(batch_size, device=logits.device), sequence_lengths | |
| ] | |
| loss = None | |
| if labels is not None: | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and ( | |
| labels.dtype == torch.long or labels.dtype == torch.int | |
| ): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| pooled_logits.view(-1, self.num_labels), labels.view(-1) | |
| ) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| class AraGPT2ForTokenClassification(AraGPT2PreTrainedModel): | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = AraGPT2Model(config) | |
| if ( | |
| hasattr(config, "classifier_dropout") | |
| and config.classifier_dropout is not None | |
| ): | |
| classifier_dropout = config.classifier_dropout | |
| elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
| classifier_dropout = config.hidden_dropout | |
| else: | |
| classifier_dropout = 0.1 | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # fmt: off | |
| # fmt: on | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.classifier(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + transformer_outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| class AraGPT2ForQuestionAnswering(AraGPT2PreTrainedModel): | |
| def __init__(self, config: AraGPT2Config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = AraGPT2Model(config) | |
| self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| outputs = self.transformer( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1).to(start_logits.device) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1).to(end_logits.device) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
