File size: 17,095 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.Consumer;
import java.util.stream.IntStream;
public class clique2_ablations_parallel2 {
static int n, m;
public static List<SnapshotDTO> main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: java clique2_ablations <epsilon> <inputfile>");
}
final double EPS = Double.parseDouble(args[0]);
Scanner r;
try {
r = new Scanner(new FileReader(args[1]));
} catch (IOException e) {
System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
r = new Scanner(System.in);
}
n = r.nextInt();
m = r.nextInt();
@SuppressWarnings("unchecked")
List<Integer>[] adj = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int a = r.nextInt(), b = r.nextInt();
adj[a].add(b);
adj[b].add(a);
}
r.close();
long t0 = System.nanoTime();
List<SnapshotDTO> res = runLaplacianRMC(adj);
long t1 = System.nanoTime();
System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
return res;
}
public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
ArrayList<SnapshotDTO> out = new ArrayList<>();
runByComponents(adj1Based, out::add);
return out;
}
/**
* Optimized O(Mk) algorithm with performance improvements.
*/
public static List<SnapshotDTO> runLaplacianRMCStreaming(List<Integer>[] adj,
Consumer<SnapshotDTO> sink) {
final int n = adj.length - 1;
// Phase 1: peeling (same as before)
int[] deg0 = new int[n + 1];
PriorityQueue<Pair> pq = new PriorityQueue<>();
for (int i = 1; i <= n; i++) {
deg0[i] = adj[i].size();
pq.add(new Pair(i, deg0[i]));
}
Deque<Integer> peelStack = new ArrayDeque<>(n);
while (!pq.isEmpty()) {
Pair p = pq.poll();
if (p.degree != deg0[p.node]) continue;
peelStack.push(p.node);
for (int v : adj[p.node]) {
if (deg0[v] > 0) {
deg0[v]--;
pq.add(new Pair(v, deg0[v]));
}
}
deg0[p.node] = 0;
}
// Build addition order and index
int[] addOrder = new int[n];
int[] idx = new int[n + 1];
for (int t = 0; t < n; t++) {
int u = peelStack.pop();
addOrder[t] = u;
idx[u] = t;
}
// Phase 1.5: orient edges by idx and sort successors
@SuppressWarnings("unchecked")
ArrayList<Integer>[] succ = new ArrayList[n + 1];
@SuppressWarnings("unchecked")
ArrayList<Integer>[] pred = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) {
succ[i] = new ArrayList<>();
pred[i] = new ArrayList<>();
}
// Parallelize edge orientation
IntStream.rangeClosed(1, n).parallel().forEach(u -> {
for (int v : adj[u]) {
if (u < v) {
if (idx[u] < idx[v]) {
synchronized(succ[u]) { succ[u].add(v); }
synchronized(pred[v]) { pred[v].add(u); }
} else {
synchronized(succ[v]) { succ[v].add(u); }
synchronized(pred[u]) { pred[u].add(v); }
}
}
}
});
// Parallel sorting
IntStream.rangeClosed(1, n).parallel().forEach(v -> {
if (succ[v].size() > 1) {
succ[v].sort(Comparator.comparingInt(w -> idx[w]));
}
});
// Phase 2: reverse reconstruction with optimizations
DSU dsu = new DSU(n);
int[] deg = new int[n + 1];
long[] predSum = new long[n + 1];
// Optimized component tracking with ArrayList
@SuppressWarnings("unchecked")
ArrayList<Integer>[] compNodes = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) compNodes[i] = new ArrayList<>();
// Reusable temporary array for node lists
int[] tempNodes = new int[100]; // Start small, will grow as needed
// Use original linear search (more reliable than binary search)
final SumSucc sumSucc = new SumSucc(succ, idx, deg);
List<SnapshotDTO> recon = new ArrayList<>();
// Progress tracking
long startTime = System.currentTimeMillis();
long lastProgressTime = startTime;
int progressInterval = 50;
int totalNodes = n;
for (int t = 0; t < addOrder.length; t++) {
int u = addOrder[t];
dsu.makeIfNeeded(u);
long Su = 0L;
final int Tu = idx[u];
compNodes[u].add(u);
// connect u to all its predecessors (earlier neighbors)
for (int v : pred[u]) {
long a = deg[u];
long b = deg[v];
// S_v = pred_sum[v] + sum of deg[w] for successors w of v with idx[w] < idx[u]
long Sv = predSum[v] + sumSucc.until(v, Tu);
long dQu = 2L * a * a - 2L * Su + a;
long dQv = 2L * b * b - 2L * Sv + b;
long edgeTerm = (a - b) * (a - b);
int ru = dsu.find(u);
int rv = dsu.find(v);
dsu.Q[ru] += (double) dQu;
dsu.Q[rv] += (double) dQv;
int r;
if (ru != rv) {
r = dsu.union(ru, rv);
dsu.Q[r] += (double) edgeTerm;
int o = (r == ru) ? rv : ru;
compNodes[r].addAll(compNodes[o]);
compNodes[o].clear();
} else {
r = ru;
dsu.Q[r] += (double) edgeTerm;
}
// degree increments
deg[u] += 1;
deg[v] += 1;
// Update sumDeg for the component
dsu.sumDeg[r] += 2;
// push +1 to predSum of successors (outdegree ≤ k)
// for (int y : succ[u]) predSum[y] += 1;
// for (int y : succ[v]) predSum[y] += 1;
if (succ[u].size() > 1000) {
succ[u].parallelStream().forEach(y -> predSum[y] += 1);
} else {
for (int y : succ[u]) predSum[y] += 1;
}
if (succ[v].size() > 1000) {
succ[v].parallelStream().forEach(y -> predSum[y] += 1);
} else {
for (int y : succ[v]) predSum[y] += 1;
}
// maintain Su: add deg[v] AFTER its increment
Su += deg[v];
}
// Efficient node array creation
int r = dsu.find(u);
int compSize = compNodes[r].size();
if (tempNodes.length < compSize) {
tempNodes = new int[compSize];
}
for (int i = 0; i < compSize; i++) {
tempNodes[i] = compNodes[r].get(i) - 1;
}
Arrays.sort(tempNodes, 0, compSize);
int[] nodes = Arrays.copyOf(tempNodes, compSize);
int compId = dsu.componentId(r);
SnapshotDTO snap = new SnapshotDTO(compId, nodes, nodes.length, dsu.sumDeg[r], dsu.Q[r]);
sink.accept(snap);
// Progress reporting every 50 steps
if ((t + 1) % progressInterval == 0 || t == addOrder.length - 1) {
long currentTime = System.currentTimeMillis();
long elapsedMs = currentTime - lastProgressTime;
long totalElapsedMs = currentTime - startTime;
double stepsPerSecond = elapsedMs > 0 ? (progressInterval * 1000.0 / elapsedMs) : 0;
double avgStepsPerSecond = totalElapsedMs > 0 ? ((t + 1) * 1000.0 / totalElapsedMs) : 0;
// System.out.printf(Locale.US, "Step #%d/%d (%.1f%%) - Speed: %.1f ops/sec (avg: %.1f ops/sec)%n",
// t + 1, totalNodes,
// (t + 1) * 100.0 / totalNodes,
// stepsPerSecond, avgStepsPerSecond);
lastProgressTime = currentTime;
}
}
return recon;
}
// === Added: component-parallel wrapper (no algorithm changes) ===
/** Return #threads from -Dthreads or THREADS env; default: max(2, availableProcessors()). */
static int threadCount() {
String prop = System.getProperty("threads");
if (prop != null) { try { return Math.max(1, Integer.parseInt(prop.trim())); } catch (Exception ignore) {} }
String env = System.getenv("THREADS");
if (env != null) { try { return Math.max(1, Integer.parseInt(env.trim())); } catch (Exception ignore) {} }
int ap = Runtime.getRuntime().availableProcessors();
return Math.max(2, ap);
}
/** Connected components on 1-based adjacency. Returns list of int[] of global node ids. */
static List<int[]> connectedComponents1Based(List<Integer>[] adj) {
final int n = adj.length - 1;
boolean[] vis = new boolean[n + 1];
int[] q = new int[n];
ArrayList<int[]> out = new ArrayList<>();
for (int s = 1; s <= n; s++) {
if (vis[s]) continue;
int qs = 0, qe = 0, t = 0;
q[qe++] = s; vis[s] = true;
int[] tmp = new int[n];
while (qs < qe) {
int u = q[qs++]; tmp[t++] = u;
for (int v : adj[u]) if (!vis[v]) { vis[v] = true; q[qe++] = v; }
}
if (t > 0) out.add(Arrays.copyOf(tmp, t));
}
return out;
}
/** Build 1-based induced subgraph for given global node ids. */
static List<Integer>[] induceSubgraph1Based(List<Integer>[] adj, int[] nodes) {
final int k = nodes.length;
@SuppressWarnings("unchecked")
List<Integer>[] sub = new List[k + 1];
for (int i = 1; i <= k; i++) sub[i] = new ArrayList<>(Math.max(2, adj[nodes[i-1]].size()));
// map global -> local (1..k)
int maxId = 0; for (int u : nodes) if (u > maxId) maxId = u;
int[] toLocal = new int[maxId + 1];
for (int i = 0; i < k; i++) toLocal[nodes[i]] = i + 1;
for (int i = 0; i < k; i++) {
int gu = nodes[i], lu = i + 1;
for (int gv : adj[gu]) {
if (gv <= maxId) {
int lv = toLocal[gv];
if (lv != 0) sub[lu].add(lv);
}
}
}
return sub;
}
/**
* Run the existing streaming algorithm per connected component in parallel.
* No changes to core logic; only maps local subgraph node indices back to global ids.
*/
public static List<SnapshotDTO> runByComponents(List<Integer>[] adj, Consumer<SnapshotDTO> sink) {
List<int[]> comps = connectedComponents1Based(adj);
final int T = threadCount();
System.err.println("[clique2] CPUs=" + Runtime.getRuntime().availableProcessors() +
" threads=" + T + " components=" + comps.size());
if (comps.size() <= 1 || T <= 1) {
// fall back to original single-core path
return runLaplacianRMCStreaming(adj, sink);
}
ArrayList<SnapshotDTO> merged = new ArrayList<>();
// Build tasks
ArrayList<Callable<List<SnapshotDTO>>> tasks = new ArrayList<>(comps.size());
for (int[] comp : comps) {
tasks.add(() -> {
List<Integer>[] sub = induceSubgraph1Based(adj, comp);
ArrayList<SnapshotDTO> local = new ArrayList<>();
// Run your existing algorithm on the subgraph
runLaplacianRMCStreaming(sub, local::add);
// Map node ids back to global
for (SnapshotDTO s : local) {
int[] a = s.nodes;
for (int i = 0; i < a.length; i++) a[i] = comp[a[i] - 1];
}
return local;
});
}
// Execute with an explicit pool (no parallelStream/common-pool surprises)
ExecutorService pool = (T >= 64) ? Executors.newWorkStealingPool(T)
: Executors.newFixedThreadPool(T);
try {
List<Future<List<SnapshotDTO>>> futs = pool.invokeAll(tasks);
for (Future<List<SnapshotDTO>> f : futs) merged.addAll(f.get());
} catch (InterruptedException | ExecutionException e) {
throw new RuntimeException(e);
} finally {
pool.shutdown();
}
if (sink != null) for (SnapshotDTO s : merged) sink.accept(s);
return merged;
}
// Keep original linear search for SumSucc - more reliable
static final class SumSucc {
final ArrayList<Integer>[] succ;
final int[] idx;
final int[] deg;
SumSucc(ArrayList<Integer>[] succ, int[] idx, int[] deg) {
this.succ = succ;
this.idx = idx;
this.deg = deg;
}
long until(int v, int T) {
final ArrayList<Integer> sv = succ[v];
final int sz = sv.size();
if (sz == 0) return 0L;
// Binary search for position where idx[w] >= T
int low = 0, high = sz;
while (low < high) {
int mid = (low + high) / 2;
if (idx[sv.get(mid)] < T) {
low = mid + 1;
} else {
high = mid;
}
}
final int pos = low;
if (pos == 0) return 0L;
// Sum prefix [0, pos)
if (pos > 500) { // Threshold; tune based on profiling (e.g., 100-1000)
return sv.subList(0, pos).parallelStream().mapToLong(w -> deg[w]).sum();
} else {
long s = 0L;
for (int i = 0; i < pos; i++) {
s += deg[sv.get(i)];
}
return s;
}
}
}
// Original helper classes (unchanged)
static class Result {
double bestSL;
int bestRoot;
}
static class Pair implements Comparable<Pair> {
final int node, degree;
Pair(int node, int degree) { this.node = node; this.degree = degree; }
public int compareTo(Pair o) {
if (degree != o.degree) return Integer.compare(degree, o.degree);
return Integer.compare(node, o.node);
}
}
static class DSU {
final int[] parent;
final int[] size;
final boolean[] made;
final double[] Q;
final int[] sumDeg;
final int[] compId; // compId[root] > 0 iff the root represents a live component
int nextCompId = 1; // 1-based; 0 means "unassigned"
DSU(int n) {
parent = new int[n + 1];
size = new int[n + 1];
made = new boolean[n + 1];
Q = new double[n + 1];
sumDeg = new int[n + 1];
compId = new int[n + 1];
}
void makeIfNeeded(int v) {
if (!made[v]) {
made[v] = true;
parent[v] = v;
size[v] = 1;
Q[v] = 0.0;
sumDeg[v] = 0;
if (compId[v] == 0) compId[v] = nextCompId++;
}
}
int find(int v) {
if (!made[v]) return v;
if (parent[v] != v) parent[v] = find(parent[v]);
return parent[v];
}
int union(int a, int b) {
makeIfNeeded(a);
makeIfNeeded(b);
int ra = find(a), rb = find(b);
if (ra == rb) return ra;
if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
parent[rb] = ra;
size[ra] += size[rb];
Q[ra] += Q[rb];
sumDeg[ra] += sumDeg[rb];
int aId = compId[ra], bId = compId[rb];
int keep = (aId == 0) ? bId : (bId == 0 ? aId : Math.min(aId, bId));
compId[ra] = keep;
compId[rb] = 0; // retire loser id
return ra;
}
int componentId(int v) { return compId[find(v)]; }
}
public static final class SnapshotDTO {
public final int componentId;
public final int[] nodes;
public final int nC;
public final long sumDegIn;
public final double Q;
public SnapshotDTO(int componentId, int[] nodes, int nC, long sumDegIn, double Q) { this.componentId = componentId; this.nodes = nodes; this.nC = nC; this.sumDegIn = sumDegIn; this.Q = Q; }
}
}
|