File size: 17,095 Bytes
bf620c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.Consumer;
import java.util.stream.IntStream;

public class clique2_ablations_parallel2 {
    static int n, m;

    public static List<SnapshotDTO> main(String[] args) throws Exception {
        if (args.length < 2) {
            System.err.println("Usage: java clique2_ablations <epsilon> <inputfile>");
        }
        final double EPS = Double.parseDouble(args[0]);

        Scanner r;
        try {
            r = new Scanner(new FileReader(args[1]));
        } catch (IOException e) {
            System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
            r = new Scanner(System.in);
        }

        n = r.nextInt();
        m = r.nextInt();

        @SuppressWarnings("unchecked")
        List<Integer>[] adj = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
        for (int i = 0; i < m; i++) {
            int a = r.nextInt(), b = r.nextInt();
            adj[a].add(b);
            adj[b].add(a);
        }
        r.close();

        long t0 = System.nanoTime();
        List<SnapshotDTO> res = runLaplacianRMC(adj);
        long t1 = System.nanoTime();

        System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
        return res;
    }

    public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
        ArrayList<SnapshotDTO> out = new ArrayList<>();
        runByComponents(adj1Based, out::add);
        return out;
    }

    /**
     * Optimized O(Mk) algorithm with performance improvements.
     */
    public static List<SnapshotDTO> runLaplacianRMCStreaming(List<Integer>[] adj,
                                                             Consumer<SnapshotDTO> sink) {
        final int n = adj.length - 1;

        // Phase 1: peeling (same as before)
        int[] deg0 = new int[n + 1];
        PriorityQueue<Pair> pq = new PriorityQueue<>();
        for (int i = 1; i <= n; i++) {
            deg0[i] = adj[i].size();
            pq.add(new Pair(i, deg0[i]));
        }
        Deque<Integer> peelStack = new ArrayDeque<>(n);
        while (!pq.isEmpty()) {
            Pair p = pq.poll();
            if (p.degree != deg0[p.node]) continue;
            peelStack.push(p.node);
            for (int v : adj[p.node]) {
                if (deg0[v] > 0) {
                    deg0[v]--;
                    pq.add(new Pair(v, deg0[v]));
                }
            }
            deg0[p.node] = 0;
        }

        // Build addition order and index
        int[] addOrder = new int[n];
        int[] idx = new int[n + 1];
        for (int t = 0; t < n; t++) {
            int u = peelStack.pop();
            addOrder[t] = u;
            idx[u] = t;
        }

        // Phase 1.5: orient edges by idx and sort successors
        @SuppressWarnings("unchecked")
        ArrayList<Integer>[] succ = new ArrayList[n + 1];
        @SuppressWarnings("unchecked")
        ArrayList<Integer>[] pred = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) {
            succ[i] = new ArrayList<>();
            pred[i] = new ArrayList<>();
        }

        // Parallelize edge orientation
        IntStream.rangeClosed(1, n).parallel().forEach(u -> {
            for (int v : adj[u]) {
                if (u < v) {
                    if (idx[u] < idx[v]) {
                        synchronized(succ[u]) { succ[u].add(v); }
                        synchronized(pred[v]) { pred[v].add(u); }
                    } else {
                        synchronized(succ[v]) { succ[v].add(u); }
                        synchronized(pred[u]) { pred[u].add(v); }
                    }
                }
            }
        });

        // Parallel sorting
        IntStream.rangeClosed(1, n).parallel().forEach(v -> {
            if (succ[v].size() > 1) {
                succ[v].sort(Comparator.comparingInt(w -> idx[w]));
            }
        });

        // Phase 2: reverse reconstruction with optimizations
        DSU dsu = new DSU(n);
        int[] deg = new int[n + 1];
        long[] predSum = new long[n + 1];

        // Optimized component tracking with ArrayList
        @SuppressWarnings("unchecked")
        ArrayList<Integer>[] compNodes = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) compNodes[i] = new ArrayList<>();

        // Reusable temporary array for node lists
        int[] tempNodes = new int[100]; // Start small, will grow as needed

        // Use original linear search (more reliable than binary search)
        final SumSucc sumSucc = new SumSucc(succ, idx, deg);

        List<SnapshotDTO> recon = new ArrayList<>();

        // Progress tracking
        long startTime = System.currentTimeMillis();
        long lastProgressTime = startTime;
        int progressInterval = 50;
        int totalNodes = n;

        for (int t = 0; t < addOrder.length; t++) {
            int u = addOrder[t];
            dsu.makeIfNeeded(u);
            long Su = 0L;
            final int Tu = idx[u];

            compNodes[u].add(u);

            // connect u to all its predecessors (earlier neighbors)
            for (int v : pred[u]) {
                long a = deg[u];
                long b = deg[v];

                // S_v = pred_sum[v] + sum of deg[w] for successors w of v with idx[w] < idx[u]
                long Sv = predSum[v] + sumSucc.until(v, Tu);

                long dQu = 2L * a * a - 2L * Su + a;
                long dQv = 2L * b * b - 2L * Sv + b;
                long edgeTerm = (a - b) * (a - b);

                int ru = dsu.find(u);
                int rv = dsu.find(v);

                dsu.Q[ru] += (double) dQu;
                dsu.Q[rv] += (double) dQv;

                int r;
                if (ru != rv) {
                    r = dsu.union(ru, rv);
                    dsu.Q[r] += (double) edgeTerm;
                    int o = (r == ru) ? rv : ru;
                    compNodes[r].addAll(compNodes[o]);
                    compNodes[o].clear();
                } else {
                    r = ru;
                    dsu.Q[r] += (double) edgeTerm;
                }

                // degree increments
                deg[u] += 1;
                deg[v] += 1;

                // Update sumDeg for the component
                dsu.sumDeg[r] += 2;

                // push +1 to predSum of successors (outdegree ≤ k)
                // for (int y : succ[u]) predSum[y] += 1;
                // for (int y : succ[v]) predSum[y] += 1;
                if (succ[u].size() > 1000) {
                    succ[u].parallelStream().forEach(y -> predSum[y] += 1);
                } else {
                    for (int y : succ[u]) predSum[y] += 1;
                }
                if (succ[v].size() > 1000) {
                    succ[v].parallelStream().forEach(y -> predSum[y] += 1);
                } else {
                    for (int y : succ[v]) predSum[y] += 1;
                }

                // maintain Su: add deg[v] AFTER its increment
                Su += deg[v];
            }

            // Efficient node array creation
            int r = dsu.find(u);
            int compSize = compNodes[r].size();
            if (tempNodes.length < compSize) {
                tempNodes = new int[compSize];
            }
            for (int i = 0; i < compSize; i++) {
                tempNodes[i] = compNodes[r].get(i) - 1;
            }
            Arrays.sort(tempNodes, 0, compSize);
            int[] nodes = Arrays.copyOf(tempNodes, compSize);

            int compId = dsu.componentId(r);
            SnapshotDTO snap = new SnapshotDTO(compId, nodes, nodes.length, dsu.sumDeg[r], dsu.Q[r]);
            sink.accept(snap);

            // Progress reporting every 50 steps
            if ((t + 1) % progressInterval == 0 || t == addOrder.length - 1) {
                long currentTime = System.currentTimeMillis();
                long elapsedMs = currentTime - lastProgressTime;
                long totalElapsedMs = currentTime - startTime;
                double stepsPerSecond = elapsedMs > 0 ? (progressInterval * 1000.0 / elapsedMs) : 0;
                double avgStepsPerSecond = totalElapsedMs > 0 ? ((t + 1) * 1000.0 / totalElapsedMs) : 0;

                // System.out.printf(Locale.US, "Step #%d/%d (%.1f%%) - Speed: %.1f ops/sec (avg: %.1f ops/sec)%n",
                //     t + 1, totalNodes,
                //     (t + 1) * 100.0 / totalNodes,
                //     stepsPerSecond, avgStepsPerSecond);

                lastProgressTime = currentTime;
            }
        }

        return recon;
    }

    // === Added: component-parallel wrapper (no algorithm changes) ===

    /** Return #threads from -Dthreads or THREADS env; default: max(2, availableProcessors()). */
    static int threadCount() {
        String prop = System.getProperty("threads");
        if (prop != null) { try { return Math.max(1, Integer.parseInt(prop.trim())); } catch (Exception ignore) {} }
        String env = System.getenv("THREADS");
        if (env != null) { try { return Math.max(1, Integer.parseInt(env.trim())); } catch (Exception ignore) {} }
        int ap = Runtime.getRuntime().availableProcessors();
        return Math.max(2, ap);
    }

    /** Connected components on 1-based adjacency. Returns list of int[] of global node ids. */
    static List<int[]> connectedComponents1Based(List<Integer>[] adj) {
        final int n = adj.length - 1;
        boolean[] vis = new boolean[n + 1];
        int[] q = new int[n];
        ArrayList<int[]> out = new ArrayList<>();
        for (int s = 1; s <= n; s++) {
            if (vis[s]) continue;
            int qs = 0, qe = 0, t = 0;
            q[qe++] = s; vis[s] = true;
            int[] tmp = new int[n];
            while (qs < qe) {
                int u = q[qs++]; tmp[t++] = u;
                for (int v : adj[u]) if (!vis[v]) { vis[v] = true; q[qe++] = v; }
            }
            if (t > 0) out.add(Arrays.copyOf(tmp, t));
        }
        return out;
    }

    /** Build 1-based induced subgraph for given global node ids. */
    static List<Integer>[] induceSubgraph1Based(List<Integer>[] adj, int[] nodes) {
        final int k = nodes.length;
        @SuppressWarnings("unchecked")
        List<Integer>[] sub = new List[k + 1];
        for (int i = 1; i <= k; i++) sub[i] = new ArrayList<>(Math.max(2, adj[nodes[i-1]].size()));
        // map global -> local (1..k)
        int maxId = 0; for (int u : nodes) if (u > maxId) maxId = u;
        int[] toLocal = new int[maxId + 1];
        for (int i = 0; i < k; i++) toLocal[nodes[i]] = i + 1;
        for (int i = 0; i < k; i++) {
            int gu = nodes[i], lu = i + 1;
            for (int gv : adj[gu]) {
                if (gv <= maxId) {
                    int lv = toLocal[gv];
                    if (lv != 0) sub[lu].add(lv);
                }
            }
        }
        return sub;
    }

    /**
     * Run the existing streaming algorithm per connected component in parallel.
     * No changes to core logic; only maps local subgraph node indices back to global ids.
     */
    public static List<SnapshotDTO> runByComponents(List<Integer>[] adj, Consumer<SnapshotDTO> sink) {
        List<int[]> comps = connectedComponents1Based(adj);
        final int T = threadCount();
        System.err.println("[clique2] CPUs=" + Runtime.getRuntime().availableProcessors() +
                " threads=" + T + " components=" + comps.size());

        if (comps.size() <= 1 || T <= 1) {
            // fall back to original single-core path
            return runLaplacianRMCStreaming(adj, sink);
        }

        ArrayList<SnapshotDTO> merged = new ArrayList<>();

        // Build tasks
        ArrayList<Callable<List<SnapshotDTO>>> tasks = new ArrayList<>(comps.size());
        for (int[] comp : comps) {
            tasks.add(() -> {
                List<Integer>[] sub = induceSubgraph1Based(adj, comp);
                ArrayList<SnapshotDTO> local = new ArrayList<>();
                // Run your existing algorithm on the subgraph
                runLaplacianRMCStreaming(sub, local::add);
                // Map node ids back to global
                for (SnapshotDTO s : local) {
                    int[] a = s.nodes;
                    for (int i = 0; i < a.length; i++) a[i] = comp[a[i] - 1];
                }
                return local;
            });
        }

        // Execute with an explicit pool (no parallelStream/common-pool surprises)
        ExecutorService pool = (T >= 64) ? Executors.newWorkStealingPool(T)
                : Executors.newFixedThreadPool(T);
        try {
            List<Future<List<SnapshotDTO>>> futs = pool.invokeAll(tasks);
            for (Future<List<SnapshotDTO>> f : futs) merged.addAll(f.get());
        } catch (InterruptedException | ExecutionException e) {
            throw new RuntimeException(e);
        } finally {
            pool.shutdown();
        }

        if (sink != null) for (SnapshotDTO s : merged) sink.accept(s);
        return merged;
    }


    // Keep original linear search for SumSucc - more reliable
    static final class SumSucc {
        final ArrayList<Integer>[] succ;
        final int[] idx;
        final int[] deg;

        SumSucc(ArrayList<Integer>[] succ, int[] idx, int[] deg) {
            this.succ = succ;
            this.idx = idx;
            this.deg = deg;
        }

        long until(int v, int T) {
            final ArrayList<Integer> sv = succ[v];
            final int sz = sv.size();
            if (sz == 0) return 0L;

            // Binary search for position where idx[w] >= T
            int low = 0, high = sz;
            while (low < high) {
                int mid = (low + high) / 2;
                if (idx[sv.get(mid)] < T) {
                    low = mid + 1;
                } else {
                    high = mid;
                }
            }
            final int pos = low;
            if (pos == 0) return 0L;

            // Sum prefix [0, pos)
            if (pos > 500) {  // Threshold; tune based on profiling (e.g., 100-1000)
                return sv.subList(0, pos).parallelStream().mapToLong(w -> deg[w]).sum();
            } else {
                long s = 0L;
                for (int i = 0; i < pos; i++) {
                    s += deg[sv.get(i)];
                }
                return s;
            }
        }
    }

    // Original helper classes (unchanged)
    static class Result {
        double bestSL;
        int bestRoot;
    }

    static class Pair implements Comparable<Pair> {
        final int node, degree;
        Pair(int node, int degree) { this.node = node; this.degree = degree; }
        public int compareTo(Pair o) {
            if (degree != o.degree) return Integer.compare(degree, o.degree);
            return Integer.compare(node, o.node);
        }
    }

    static class DSU {
        final int[] parent;
        final int[] size;
        final boolean[] made;
        final double[] Q;
        final int[] sumDeg;
        final int[] compId;        // compId[root] > 0 iff the root represents a live component
        int nextCompId = 1;        // 1-based; 0 means "unassigned"

        DSU(int n) {
            parent = new int[n + 1];
            size = new int[n + 1];
            made = new boolean[n + 1];
            Q = new double[n + 1];
            sumDeg = new int[n + 1];
            compId = new int[n + 1];
        }
        void makeIfNeeded(int v) {
            if (!made[v]) {
                made[v] = true;
                parent[v] = v;
                size[v] = 1;
                Q[v] = 0.0;
                sumDeg[v] = 0;
                if (compId[v] == 0) compId[v] = nextCompId++;
            }
        }
        int find(int v) {
            if (!made[v]) return v;
            if (parent[v] != v) parent[v] = find(parent[v]);
            return parent[v];
        }
        int union(int a, int b) {
            makeIfNeeded(a);
            makeIfNeeded(b);
            int ra = find(a), rb = find(b);
            if (ra == rb) return ra;
            if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
            parent[rb] = ra;
            size[ra] += size[rb];
            Q[ra] += Q[rb];
            sumDeg[ra] += sumDeg[rb];

            int aId = compId[ra], bId = compId[rb];
            int keep = (aId == 0) ? bId : (bId == 0 ? aId : Math.min(aId, bId));
            compId[ra] = keep;
            compId[rb] = 0;  // retire loser id

            return ra;
        }

        int componentId(int v) { return compId[find(v)]; }
    }

    public static final class SnapshotDTO {
        public final int componentId;
        public final int[] nodes;
        public final int nC;
        public final long sumDegIn;
        public final double Q;
        public SnapshotDTO(int componentId, int[] nodes, int nC, long sumDegIn, double Q) { this.componentId = componentId; this.nodes = nodes; this.nC = nC; this.sumDegIn = sumDegIn; this.Q = Q; }
    }
}