File size: 19,485 Bytes
bf620c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
package old;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.*;

/**
 * Cora ablation driver for L-RMC.
 * <p>
 * - Loads Cora (content + cites)
 * - Calls clique2_ablations.runLaplacianRMC(adj) to get reconstruction snapshots
 * - Scores snapshots with the calibrated surrogate:
 * \tilde S_L(C) = |C| * ( dbar(C) - alpha * sqrt(Q + epsilon) )
 * where Q = d^T L_C d from snapshots, dbar = sumDegIn / |C|
 * - For each (epsilon, alpha) combination, assigns each node the majority label
 * of the highest-scoring snapshot that contains it, then reports accuracy.
 * <p>
 * α choices match the ablation in the paper:
 * α ∈ { diam(C), 1/√λ2(C) }  and  ε ∈ {1e-8, 1e-6, 1e-4}.
 * <p>
 * References to definitions and ablation settings:
 * - Surrogate + α calibration and bounds: Section 5, eqs. (6)-(7), SeL.
 * - Ablation settings on ε and α on Cora: Section 7.3 and Figure 3.
 */
class LRMCablations2 {

    // Ablation grid
    static final double[] EPSILONS = {1e-8, 1e-6, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 20000, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e12, 1e13, 1e14};

    public static void main(String[] args) throws Exception {
        if (args.length < 3) {
            System.err.println("Usage: java LRMCablations2 <path/to/cora.content> <path/to/cora.cites> <output_csv> <output_seeds> <alpha_type> <eps>");
            return;
        }
        final Path contentPath = Paths.get(args[0]);
        final Path citesPath = Paths.get(args[1]);
        final Path outCsv = Paths.get(args[2]);
        final Path outSeeds = (args.length >= 4 ? Paths.get(args[3]) : null);
        final AlphaKind alphaKind = (args.length >= 5 ? parseAlpha(args[4]) : AlphaKind.DIAM);
        final double eps = (args.length >= 6 ? Double.parseDouble(args[5]) : 1e-6);

        // 1) Load Cora graph and labels
        GraphData G = loadCora(contentPath, citesPath);
        System.out.printf(Locale.US, "# Loaded Cora: n=%d, m=%d, classes=%d%n",
                G.n, G.m, G.labelNames.length);

        // 2) Run L-RMC reconstruction to get snapshots
        List<clique2_ablations.SnapshotDTO> snaps = clique2_ablations.runLaplacianRMC(G.adj1Based);
        System.out.printf(Locale.US, "# Reconstruction snapshots: %d%n", snaps.size());

        // 3) Either sweep for the paper CSV, or compute a single row for export mode
        List<ResultRow> outRows = new ArrayList<>();
        if (outSeeds != null) {
            // Single point using CLI epsilon/alpha
            double acc = labelAccuracyFromSnapshots(snaps, G, eps, alphaKind);
            String alphaName = (alphaKind == AlphaKind.DIAM) ? "diam(C)" : "1/sqrt(lambda2)";
            outRows.add(new ResultRow(eps, alphaName, acc, G.n, G.m));
            System.out.printf(Locale.US, "epsilon=%.0e, alpha=%s, accuracy=%.4f%n",
                    eps, alphaName, acc);
        } else {
            // Full sweep for ablations
            for (double epsGrid : EPSILONS) {
                for (AlphaKind aKind : AlphaKind.values()) {
                    double acc = labelAccuracyFromSnapshots(snaps, G, epsGrid, aKind);
                    String alphaName = (aKind == AlphaKind.DIAM) ? "diam(C)" : "1/sqrt(lambda2)";
                    outRows.add(new ResultRow(epsGrid, alphaName, acc, G.n, G.m));
                    System.out.printf(Locale.US, "epsilon=%.0e, alpha=%s, accuracy=%.4f%n",
                            epsGrid, alphaName, acc);
                }
            }
        }

        // 4) Save CSV
        try (BufferedWriter w = Files.newBufferedWriter(outCsv, StandardCharsets.UTF_8)) {
            w.write("epsilon,alpha,accuracy,nodes,edges\n");
            for (ResultRow r : outRows) {
                w.write(String.format(Locale.US, "%.0e,%s,%.6f,%d,%d%n",
                        r.epsilon, r.alpha, r.accuracy, r.n, r.m));
            }
        }
        System.out.println("# Wrote: " + outCsv.toAbsolutePath());

        if (outSeeds != null) {
            exportLrmcSeeds(snaps, G, eps, alphaKind, outSeeds);
        }
    }

    // Accuracy from α-calibrated surrogate over all nodes
    static double labelAccuracyFromSnapshots(
            List<clique2_ablations.SnapshotDTO> snaps,
            GraphData G,
            double epsilon,
            AlphaKind alphaKind
    ) {
        final int n = G.n;
        final int numClasses = G.labelNames.length;

        double[] bestScore = new double[n];
        int[] bestLabel = new int[n];
        Arrays.fill(bestScore, Double.NEGATIVE_INFINITY);
        Arrays.fill(bestLabel, -1);

        // Pre-allocate scratch to avoid churn in inner loops
        boolean[] inC = new boolean[n];

        for (clique2_ablations.SnapshotDTO s : snaps) {
            final int[] nodes = s.nodes;           // 0-based ids
            final int k = nodes.length;
            if (k == 0) continue;

            // Mark current component
            for (int u : nodes) inC[u] = true;

            // Average internal degree in the component
            final double dbar = (k == 0) ? 0.0 : (s.sumDegIn / (double) k);
            // Laplacian energy Q and calibrated α
            final double Q = s.Q;
            double alpha;
            if (alphaKind == AlphaKind.DIAM) {
                alpha = approxDiameter(nodes, G.adj1Based, inC);
            } else {
                double lam2 = approxLambda2(nodes, G.adj1Based, inC);
                if (lam2 <= 1e-12) lam2 = 1e-12; // guard for nC=1 or numerical zeros
                alpha = 1.0 / Math.sqrt(lam2);
            }

            // Calibrated surrogate \tilde S_L(C)
            final double score = k * (dbar - alpha * Math.sqrt(Q + epsilon));

            // Majority label of this component
            int maj = majorityLabel(nodes, G.labels, numClasses);

            // Update node-wise best snapshot under this scoring
            for (int u : nodes) {
                if (score > bestScore[u]) {
                    bestScore[u] = score;
                    bestLabel[u] = maj;
                }
            }

            // Unmark
            for (int u : nodes) inC[u] = false;
        }

        // Compute accuracy over all nodes
        int correct = 0;
        for (int u = 0; u < n; u++) {
            // Every node appears in at least its singleton snapshot
            if (bestLabel[u] == G.labels[u]) correct++;
        }
        return correct / (double) n;
    }

    // Majority label
    static int majorityLabel(int[] nodes, int[] labels, int numClasses) {
        int[] cnt = new int[numClasses];
        for (int u : nodes) cnt[labels[u]]++;
        int best = 0, arg = 0;
        for (int c = 0; c < numClasses; c++) {
            if (cnt[c] > best) {
                best = cnt[c];
                arg = c;
            }
        }
        return arg;
    }

    // Approximate diameter by 2-sweep BFS on the induced subgraph
    static int approxDiameter(int[] nodes, List<Integer>[] adj1, boolean[] inC) {
        if (nodes.length <= 1) return 0;

        int start = nodes[0];
        int u = farthestInComponent(start, adj1, inC).node;
        BFSResult r = farthestInComponent(u, adj1, inC);
        return r.dist;
    }

    static BFSResult farthestInComponent(int src0, List<Integer>[] adj1, boolean[] inC) {
        int n = inC.length;
        int[] dist = new int[n];
        Arrays.fill(dist, -1);
        ArrayDeque<Integer> q = new ArrayDeque<>();
        dist[src0] = 0;
        q.add(src0);
        int bestNode = src0, bestDist = 0;
        while (!q.isEmpty()) {
            int u = q.poll();
            int du = dist[u];
            if (du > bestDist) {
                bestDist = du;
                bestNode = u;
            }
            for (int v1 : adj1[u + 1]) {
                int v = v1 - 1;
                if (!inC[v]) continue;
                if (dist[v] >= 0) continue;
                dist[v] = du + 1;
                q.add(v);
            }
        }
        return new BFSResult(bestNode, bestDist);
    }

    // Approximate λ2(L_C) via orthogonalized power iteration
    static double approxLambda2(int[] nodes, List<Integer>[] adj1, boolean[] inC) {
        final int k = nodes.length;
        if (k <= 1) return 0.0;

        // local index mapping
        int[] loc = new int[inC.length];
        Arrays.fill(loc, -1);
        for (int i = 0; i < k; i++) loc[nodes[i]] = i;

        // Build degrees inside C and find d_max
        int[] deg = new int[k];
        int dmax = 0;
        for (int i = 0; i < k; i++) {
            int u = nodes[i];
            int du = 0;
            for (int w1 : adj1[u + 1]) {
                int w = w1 - 1;
                if (loc[w] >= 0) du++;
            }
            deg[i] = du;
            if (du > dmax) dmax = du;
        }
        if (dmax == 0) return 0.0;

        final double c = 2.0 * dmax + 1.0; // shift

        double[] x = new double[k];
        Random rng = new Random(42);
        for (int i = 0; i < k; i++) x[i] = rng.nextDouble() - 0.5;
        orthToOnes(x);
        normalize(x);

        double[] Lx = new double[k];
        double[] y = new double[k];

        final int iters = 30;
        for (int it = 0; it < iters; it++) {
            // L x
            Arrays.fill(Lx, 0.0);
            for (int i = 0; i < k; i++) {
                double sumNbr = 0.0;
                int u = nodes[i];
                for (int w1 : adj1[u + 1]) {
                    int j = loc[w1 - 1];
                    if (j >= 0) sumNbr += x[j];
                }
                Lx[i] = deg[i] * x[i] - sumNbr;
            }
            // y = x - (1/c)*Lx
            for (int i = 0; i < k; i++) y[i] = x[i] - Lx[i] / c;
            orthToOnes(y);
            normalize(y);
            System.arraycopy(y, 0, x, 0, k);
        }

        // Rayleigh quotient x^T L x
        double num = 0.0;
        for (int i = 0; i < k; i++) {
            double sumNbr = 0.0;
            int u = nodes[i];
            for (int w1 : adj1[u + 1]) {
                int j = loc[w1 - 1];
                if (j >= 0) sumNbr += x[j];
            }
            double Lxi = deg[i] * x[i] - sumNbr;
            num += x[i] * Lxi;
        }
        // x is unit norm, so denom ~ 1
        return Math.max(num, 0.0);
    }

    static void orthToOnes(double[] v) {
        double mean = 0.0;
        for (double x : v) mean += x;
        mean /= v.length;
        for (int i = 0; i < v.length; i++) v[i] -= mean;
    }

    static void normalize(double[] v) {
        double nrm2 = 0.0;
        for (double x : v) nrm2 += x * x;
        if (nrm2 <= 0) {
            v[0] = 1.0;
            nrm2 = 1.0;
        }
        double inv = 1.0 / Math.sqrt(nrm2);
        for (int i = 0; i < v.length; i++) v[i] *= inv;
    }

    // Cora loader
    static GraphData loadCora(Path content, Path cites) throws IOException {
        Map<String, Integer> id2idx = new LinkedHashMap<>();
        Map<String, Integer> lbl2idx = new LinkedHashMap<>();
        List<String> lblNames = new ArrayList<>();
        List<Integer> labelsList = new ArrayList<>();

        // Pass 1: content defines node universe and labels
        try (BufferedReader br = Files.newBufferedReader(content, StandardCharsets.UTF_8)) {
            String s;
            while ((s = br.readLine()) != null) {
                s = s.trim();
                if (s.isEmpty()) continue;
                String[] tok = s.split("\\s+");
                String id = tok[0];
                String lab = tok[tok.length - 1];
                int u = id2idx.computeIfAbsent(id, _k -> id2idx.size());
                int c = lbl2idx.computeIfAbsent(lab, _k -> {
                    lblNames.add(lab);
                    return lblNames.size() - 1;
                });
                // Extend labels list to position u if needed
                while (labelsList.size() <= u) labelsList.add(0);
                labelsList.set(u, c);
            }
        }
        int n = id2idx.size();
        int[] labels = new int[n];
        for (int i = 0; i < n; i++) labels[i] = labelsList.get(i);

        // Temp adjacency as sets to dedup
        @SuppressWarnings("unchecked")
        HashSet<Integer>[] adjSet1 = new HashSet[n + 1];
        for (int i = 1; i <= n; i++) adjSet1[i] = new HashSet<>();

        // Pass 2: cites edges
        long mUndir = 0;
        try (BufferedReader br = Files.newBufferedReader(cites, StandardCharsets.UTF_8)) {
            String s;
            while ((s = br.readLine()) != null) {
                s = s.trim();
                if (s.isEmpty() || s.startsWith("#")) continue;
                String[] tok = s.split("\\s+|,");
                if (tok.length < 2) continue;
                Integer ui = id2idx.get(tok[0]);
                Integer vi = id2idx.get(tok[1]);
                if (ui == null || vi == null) continue; // skip unknown ids
                int a = ui + 1, b = vi + 1;             // to 1-based
                if (a == b) continue;
                if (adjSet1[a].add(b)) {
                    adjSet1[b].add(a);
                    mUndir++;
                }
            }
        }

        @SuppressWarnings("unchecked")
        List<Integer>[] adj1 = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) {
            adj1[i] = new ArrayList<>(adjSet1[i]);
        }

        GraphData G = new GraphData();
        G.n = n;
        G.m = mUndir;
        G.adj1Based = adj1;
        G.labels = labels;
        G.labelNames = lblNames.toArray(new String[0]);
        return G;
    }

    // Parse alpha kind from string
    static AlphaKind parseAlpha(String s) {
        String t = s.trim().toUpperCase(Locale.ROOT);
        if (t.equals("DIAM") || t.equals("DIAM(C)") || t.equals("DIAMETER")) return AlphaKind.DIAM;
        if (t.equals("INV_SQRT_LAMBDA2") || t.equals("1/SQRT(LAMBDA2)") || t.equals("LAMBDA2"))
            return AlphaKind.INV_SQRT_LAMBDA2;
        throw new IllegalArgumentException("Unknown alpha kind: " + s);
    }

    // Export seeds as a node->cluster partition built from best snapshot per node
    static void exportLrmcSeeds(
            List<clique2_ablations.SnapshotDTO> snaps,
            GraphData G,
            double epsilon,
            AlphaKind alphaKind,
            Path outJson) throws IOException {
        final int n = G.n;
        final boolean[] inC = new boolean[n];

        // 1) Score every snapshot with the calibrated surrogate: k*(dbar - alpha*sqrt(Q+eps))
        final double[] snapScore = new double[snaps.size()];
        Arrays.fill(snapScore, Double.NEGATIVE_INFINITY);
        for (int i = 0; i < snaps.size(); i++) {
            clique2_ablations.SnapshotDTO s = snaps.get(i);
            final int[] nodes = s.nodes; // 0-based ids
            final int k = nodes.length;
            if (k == 0) continue;
            for (int u : nodes) inC[u] = true;
            final double dbar = s.sumDegIn / Math.max(1.0, k);
            final double Q = s.Q;
            final double alpha;
            if (alphaKind == AlphaKind.DIAM) {
                alpha = approxDiameter(nodes, G.adj1Based, inC);
            } else {
                double lam2 = approxLambda2(nodes, G.adj1Based, inC);
                if (lam2 <= 1e-12) lam2 = 1e-12;
                alpha = 1.0 / Math.sqrt(lam2);
            }
            final double score = k * (dbar - alpha * Math.sqrt(Q + epsilon));
            snapScore[i] = score;
            for (int u : nodes) inC[u] = false;
        }

        // 2) Best snapshot per node
        final double[] best = new double[n];
        final int[] bestSnap = new int[n];
        Arrays.fill(best, Double.NEGATIVE_INFINITY);
        Arrays.fill(bestSnap, -1);
        for (int i = 0; i < snaps.size(); i++) {
            clique2_ablations.SnapshotDTO s = snaps.get(i);
            double sc = snapScore[i];
            for (int u : s.nodes) {
                if (sc > best[u]) {
                    best[u] = sc;
                    bestSnap[u] = i;
                }
            }
        }

        // 3) Build cluster membership map: snapshot id -> members
        LinkedHashMap<Integer, List<Integer>> members = new LinkedHashMap<>();
        for (int u = 0; u < n; u++) {
            int sid = bestSnap[u];
            if (sid < 0) continue; // should not happen if singleton snapshots exist
            members.computeIfAbsent(sid, _k -> new ArrayList<>()).add(u);
        }

        // 4) Relabel to contiguous cluster ids
        LinkedHashMap<Integer, Integer> snap2cluster = new LinkedHashMap<>();
        int cid = 0;
        for (int sid : members.keySet()) snap2cluster.put(sid, cid++);

        // 5) Write JSON
        try (BufferedWriter w = Files.newBufferedWriter(outJson, StandardCharsets.UTF_8)) {
            w.write("{\"meta\":{");
            w.write("\"epsilon\":" + epsilon + ",\"alpha_kind\":\"" + alphaKind + "\",\"n\":" + G.n + ",\"m\":" + G.m + "},");
            w.write("\"clusters\":[\n");
            boolean first = true;
            for (Map.Entry<Integer, List<Integer>> e : members.entrySet()) {
                int sid = e.getKey();
                int clusterId = snap2cluster.get(sid);
                clique2_ablations.SnapshotDTO s = snaps.get(sid);
                if (!first) w.write(",\n");
                first = false;
                w.write("  {\"cluster_id\":" + clusterId);
                w.write(",\"snapshot_id\":" + sid);
                w.write(",\"score\":" + snapScore[sid]);
                w.write(",\"k_seed\":" + s.nodes.length);
                w.write(",\"members\":" + intListToJson(e.getValue()));
                w.write(",\"seed_nodes\":" + intArrayToJson(s.nodes));
                w.write("}");
            }
            w.write("\n]}");
        }
        System.out.println("# Wrote seeds: " + outJson.toAbsolutePath());
    }

    static String intArrayToJson(int[] a) {
        StringBuilder sb = new StringBuilder();
        sb.append('[');
        for (int i = 0; i < a.length; i++) {
            if (i > 0) sb.append(',');
            sb.append(a[i]);
        }
        sb.append(']');
        return sb.toString();
    }

    static String intListToJson(List<Integer> a) {
        StringBuilder sb = new StringBuilder();
        sb.append('[');
        for (int i = 0; i < a.size(); i++) {
            if (i > 0) sb.append(',');
            sb.append(a.get(i));
        }
        sb.append(']');
        return sb.toString();
    }

    enum AlphaKind {DIAM, INV_SQRT_LAMBDA2}

    static class BFSResult {
        final int node, dist;

        BFSResult(int node, int dist) {
            this.node = node;
            this.dist = dist;
        }
    }

    // Data holders
    static final class GraphData {
        int n;
        long m;
        List<Integer>[] adj1Based; // 1-based adjacency
        int[] labels;              // 0-based labels per node id
        String[] labelNames;
    }

    static final class ResultRow {
        final double epsilon;
        final String alpha;
        final double accuracy;
        final int n;
        final long m;

        ResultRow(double epsilon, String alpha, double accuracy, int n, long m) {
            this.epsilon = epsilon;
            this.alpha = alpha;
            this.accuracy = accuracy;
            this.n = n;
            this.m = m;
        }
    }
}