codechrl commited on
Commit
a90f84c
·
verified ·
1 Parent(s): cdaa7b1

Training update: 110/67,618 rows (0.16%) | +50 new @ 2025-10-20 05:30:24

Browse files
README.md CHANGED
@@ -1,54 +1,70 @@
1
  ---
2
- library_name: transformers
3
- license: mit
4
- base_model: boltuix/bert-micro
5
  tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: bert-micro-cybersecurity
9
- results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
  # bert-micro-cybersecurity
16
 
17
- This model is a fine-tuned version of [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro) on the None dataset.
 
 
 
 
 
 
 
 
18
 
19
- ## Model description
 
 
20
 
21
- More information needed
22
 
23
- ## Intended uses & limitations
 
24
 
25
- More information needed
 
 
 
26
 
27
- ## Training and evaluation data
 
 
 
28
 
29
- More information needed
30
 
31
- ## Training procedure
32
 
33
- ### Training hyperparameters
 
34
 
35
- The following hyperparameters were used during training:
36
- - learning_rate: 5e-05
37
- - train_batch_size: 8
38
- - eval_batch_size: 8
39
- - seed: 42
40
- - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
41
- - lr_scheduler_type: linear
42
- - lr_scheduler_warmup_ratio: 0.06
43
- - num_epochs: 3
44
 
45
- ### Training results
 
46
 
 
 
47
 
 
 
 
 
 
 
48
 
49
- ### Framework versions
50
 
51
- - Transformers 4.57.0
52
- - Pytorch 2.8.0+cu128
53
- - Datasets 4.2.0
54
- - Tokenizers 0.22.1
 
 
1
  ---
2
+ language:
3
+ - en
4
+ - id
5
  tags:
6
+ - text-classification
7
+ - cybersecurity
8
+ base_model: boltuix/bert-micro
 
9
  ---
10
 
 
 
 
11
  # bert-micro-cybersecurity
12
 
13
+ ## 1. Model Details
14
+
15
+ **Model description**
16
+ "bert-micro-cybersecurity" is a compact transformer model derived from `boltuix/bert-micro`, adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
17
+
18
+ - Model type: fine-tuned lightweight BERT variant
19
+ - Languages: English & Indonesia
20
+ - Finetuned from: `boltuix/bert-micro`
21
+ - Status: **Early version** — trained on **0.16%** of planned data).
22
 
23
+ **Model sources**
24
+ - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
25
+ - Data: Cybersecurity Data
26
 
27
+ ## 2. Uses
28
 
29
+ ### Direct use
30
+ You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
31
 
32
+ ### Downstream use
33
+ - Embedding extraction for clustering or anomaly detection in security logs.
34
+ - As part of a pipeline for phishing detection, malicious email filtering, incident triage.
35
+ - As a feature extractor feeding a downstream system (e.g., alert-generation, SOC dashboard).
36
 
37
+ ### Out-of-scope use
38
+ - Not meant for high-stakes automated blocking decisions without human review.
39
+ - Not optimized for languages other than English and Indonesian.
40
+ - Not tested for non-cybersecurity domains or out-of-distribution data.
41
 
42
+ ## 3. Bias, Risks, and Limitations
43
 
44
+ Because the model is based on a small subset (0.16%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
45
 
46
+ - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
47
+ - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
48
 
49
+ ## 4. How to Get Started with the Model
 
 
 
 
 
 
 
 
50
 
51
+ ```python
52
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
53
 
54
+ tokenizer = AutoTokenizer.from_pretrained("codechrl/bert-micro-cybersecurity")
55
+ model = AutoModelForSequenceClassification.from_pretrained("codechrl/bert-micro-cybersecurity")
56
 
57
+ inputs = tokenizer("The server logged an unusual outbound connection to 123.123.123.123",
58
+ return_tensors="pt", truncation=True, padding=True)
59
+ outputs = model(**inputs)
60
+ logits = outputs.logits
61
+ predicted_class = logits.argmax(dim=-1).item()
62
+ ```
63
 
64
+ ## 5. Training Details
65
 
66
+ - **Trained records**: 110 / 67,618 (0.16%)
67
+ - **Learning rate**: 5e-05
68
+ - **Epochs**: 3
69
+ - **Batch size**: 8
70
+ - **Max sequence length**: 512
checkpoint-21/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 128,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 512,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 2,
17
+ "num_hidden_layers": 2,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "transformers_version": "4.57.0",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
checkpoint-21/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fccffc8436212a980c3a25ef5c4583dfed723e4f0c1c8857ea354d783347165c
3
+ size 17671560
checkpoint-21/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0a700261a075b2798ae3c3216f142d1949a2c849645138e8de3eb2613a50d6
3
+ size 35368075
checkpoint-21/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61e0305d9611ca4c75692d1a176f35005d0ec603a42601986f9763caf8eb903
3
+ size 14455
checkpoint-21/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f374c8187c2d2db1143eb348871ee957c3603763a041fd251d09062f56d5688
3
+ size 1465
checkpoint-21/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-21/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
checkpoint-21/trainer_state.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 21,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [],
12
+ "logging_steps": 100,
13
+ "max_steps": 21,
14
+ "num_input_tokens_seen": 0,
15
+ "num_train_epochs": 3,
16
+ "save_steps": 500,
17
+ "stateful_callbacks": {
18
+ "TrainerControl": {
19
+ "args": {
20
+ "should_epoch_stop": false,
21
+ "should_evaluate": false,
22
+ "should_log": false,
23
+ "should_save": true,
24
+ "should_training_stop": true
25
+ },
26
+ "attributes": {}
27
+ }
28
+ },
29
+ "total_flos": 204636672000.0,
30
+ "train_batch_size": 8,
31
+ "trial_name": null,
32
+ "trial_params": null
33
+ }
checkpoint-21/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc19d58cd6f4e9fa4667b169e0aa27f6ade93802615c12a15ae7cfdf97b1d049
3
+ size 5841
checkpoint-21/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:620ecf924382af049bf9177f69f38d213c9ecfad19d99cc31432f1303545db4b
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fccffc8436212a980c3a25ef5c4583dfed723e4f0c1c8857ea354d783347165c
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7fbf9c2924957ebfb9c1cdf0e7b5f2c65ce144192d10d1f832db128968032ad8
3
  size 5841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc19d58cd6f4e9fa4667b169e0aa27f6ade93802615c12a15ae7cfdf97b1d049
3
  size 5841
training_metadata.json CHANGED
@@ -1,10 +1,11 @@
1
  {
2
- "trained_at": 1760937826.247165,
3
- "trained_at_readable": "2025-10-20 05:23:46",
4
- "samples": 50,
5
- "trained_rows": 60,
 
6
  "total_db_rows": 67618,
7
- "percentage": 0.08873376911473276,
8
  "final_loss": 0,
9
  "epochs": 3,
10
  "learning_rate": 5e-05
 
1
  {
2
+ "trained_at": 1760938224.2996256,
3
+ "trained_at_readable": "2025-10-20 05:30:24",
4
+ "samples_this_session": 50,
5
+ "new_rows_this_session": 50,
6
+ "trained_rows_total": 110,
7
  "total_db_rows": 67618,
8
+ "percentage": 0.1626785767103434,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05