""" Example usage of the DLSCA Test Dataset with streaming zarr support. This example demonstrates how to use the custom dataset for both local development and production with streaming capabilities. Note: You may see "Repo card metadata block was not found" warnings - these are harmless and expected for local datasets without published cards. """ import os from test import TestDataset, TestDownloadManager import numpy as np def example_local_usage(): """Example of using the dataset locally for development.""" print("=== Local Development Usage ===") # Load dataset locally dataset = TestDataset() dataset.download_and_prepare() dataset_dict = dataset.as_dataset(split="train") print(f"Dataset size: {len(dataset_dict)}") print(f"Features: {list(dataset_dict.features.keys())}") # Access a few examples for i in range(3): example = dataset_dict[i] print(f"Example {i}: labels={example['labels'][:2]}..., traces_len={len(example['traces'])}") return dataset_dict def example_streaming_usage(): """Example of using the dataset with streaming zarr support.""" print("\n=== Streaming Usage ===") # Initialize custom download manager dl_manager = TestDownloadManager(dataset_name="dlsca_test") # Convert traces to zarr format and cache traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") zarr_zip_path = dl_manager.download_zarr_chunks(traces_path, chunk_size=100) print(f"Zarr chunks cached at: {zarr_zip_path}") # Load dataset with streaming dataset = TestDataset() # Test streaming access to zarr data zarr_array = dataset._load_zarr_from_zip(zarr_zip_path) print(f"Zarr array shape: {zarr_array.shape}") print(f"Zarr array chunks: {zarr_array.chunks}") # Demonstrate chunk-based access (simulating streaming) chunk_size = 100 num_chunks = (zarr_array.shape[0] + chunk_size - 1) // chunk_size print(f"Total chunks: {num_chunks}") # Access data by chunks (this would be efficient for large datasets) for chunk_idx in range(min(3, num_chunks)): # Just show first 3 chunks start_idx = chunk_idx * chunk_size end_idx = min(start_idx + chunk_size, zarr_array.shape[0]) chunk_data = zarr_array[start_idx:end_idx] print(f"Chunk {chunk_idx}: shape={chunk_data.shape}, range=[{start_idx}:{end_idx}]") return zarr_array def example_chunk_selection(): """Example of selecting specific chunks for training.""" print("\n=== Chunk Selection Example ===") dl_manager = TestDownloadManager() traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") zarr_zip_path = dl_manager.download_zarr_chunks(traces_path, chunk_size=100) dataset = TestDataset() zarr_array = dataset._load_zarr_from_zip(zarr_zip_path) labels = np.load(os.path.join(os.path.dirname(__file__), "data", "labels.npy")) # Example: Select specific samples for training (e.g., samples 200-299) selected_range = slice(200, 300) selected_traces = zarr_array[selected_range] selected_labels = labels[selected_range] print(f"Selected traces shape: {selected_traces.shape}") print(f"Selected labels shape: {selected_labels.shape}") print(f"Sample labels: {selected_labels[:3]}") return selected_traces, selected_labels def benchmark_access_patterns(): """Benchmark different access patterns.""" print("\n=== Access Pattern Benchmark ===") import time # Load both numpy and zarr versions traces_np = np.load(os.path.join(os.path.dirname(__file__), "data", "traces.npy")) dl_manager = TestDownloadManager() traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") zarr_zip_path = dl_manager.download_zarr_chunks(traces_path, chunk_size=100) dataset = TestDataset() traces_zarr = dataset._load_zarr_from_zip(zarr_zip_path) # Benchmark sequential access print("Sequential access (first 300 samples):") # NumPy start = time.time() np_data = traces_np[:300] np_time = time.time() - start print(f" NumPy: {np_time:.4f}s") # Zarr start = time.time() zarr_data = traces_zarr[:300] zarr_time = time.time() - start print(f" Zarr: {zarr_time:.4f}s") # Verify same data print(f" Data identical: {np.array_equal(np_data, zarr_data)}") # Benchmark random access print("\nRandom chunk access (3 chunks):") indices = [50, 250, 450] # NumPy start = time.time() for idx in indices: _ = traces_np[idx:idx+50] np_random_time = time.time() - start print(f" NumPy: {np_random_time:.4f}s") # Zarr start = time.time() for idx in indices: _ = traces_zarr[idx:idx+50] zarr_random_time = time.time() - start print(f" Zarr: {zarr_random_time:.4f}s") if __name__ == "__main__": # Run all examples local_dataset = example_local_usage() zarr_array = example_streaming_usage() selected_data = example_chunk_selection() benchmark_access_patterns() print("\n=== Summary ===") print("✅ Local dataset loading works") print("✅ Zarr conversion and streaming works") print("✅ Chunk selection works") print("✅ Access pattern benchmarking works") print("\nThe dataset is ready for use with Hugging Face Hub!") print("Next steps:") print("1. Push this dataset to Hugging Face Hub") print("2. Use datasets.load_dataset('DLSCA/test') to access it") print("3. The streaming will automatically use zarr chunks for large traces")