Upload dan-chat-advanced-llama3.py
Browse files- dan-chat-advanced-llama3.py +159 -0
dan-chat-advanced-llama3.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class"""
|
| 2 |
+
|
| 3 |
+
import copy
|
| 4 |
+
import logging
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
from typing import Generator, List, Tuple, Dict
|
| 7 |
+
|
| 8 |
+
from axolotl.prompt_tokenizers import (
|
| 9 |
+
PromptTokenizingStrategy,
|
| 10 |
+
parse_tokenized_to_result,
|
| 11 |
+
tokenize_prompt_default,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
LOG = logging.getLogger("axolotl")
|
| 15 |
+
|
| 16 |
+
IGNORE_TOKEN_ID = -100
|
| 17 |
+
|
| 18 |
+
turn_separator = ""
|
| 19 |
+
|
| 20 |
+
system_prefix = "<|start_header_id|>system<|end_header_id|>\n\n"
|
| 21 |
+
user_prefix = "<|start_header_id|>user<|end_header_id|>\n\n"
|
| 22 |
+
assistant_prefix = "<|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 23 |
+
tool_prefix = "<|start_header_id|>tool<|end_header_id|>\n\n"
|
| 24 |
+
|
| 25 |
+
class DanChatMLPromptTokenizingStrategy(PromptTokenizingStrategy):
|
| 26 |
+
def __init__(self, prompter, tokenizer, train_on_inputs, sequence_len, *args, **kwargs):
|
| 27 |
+
super().__init__(prompter, tokenizer, *args, **kwargs)
|
| 28 |
+
|
| 29 |
+
res = self._tokenize(assistant_prefix, add_eos_token=False, strip_bos_token=True)
|
| 30 |
+
self.bot_prefix_token_ids = res["input_ids"]
|
| 31 |
+
|
| 32 |
+
res = self._tokenize(turn_separator, add_eos_token=False, strip_bos_token=True)
|
| 33 |
+
self.turn_separator_token_ids = res["input_ids"]
|
| 34 |
+
|
| 35 |
+
self.train_on_inputs = train_on_inputs
|
| 36 |
+
self.sequence_len = sequence_len
|
| 37 |
+
|
| 38 |
+
def tokenize_prompt(self, prompt):
|
| 39 |
+
prompt_parts = list(self.prompter.build_prompt(prompt["conversations"]))
|
| 40 |
+
tokenized_parts = []
|
| 41 |
+
total_length = 0
|
| 42 |
+
not_first_turn = False
|
| 43 |
+
|
| 44 |
+
for role, message, loss, prefix in prompt_parts:
|
| 45 |
+
# If prefix is not defined, set it to an empty string
|
| 46 |
+
if prefix is None:
|
| 47 |
+
prefix = ""
|
| 48 |
+
|
| 49 |
+
if role in ["system", "user", "human", "tool"]:
|
| 50 |
+
# Set the role prefix based on the role
|
| 51 |
+
if role == "system":
|
| 52 |
+
role_prefix = system_prefix
|
| 53 |
+
elif role == "user" or role == "human":
|
| 54 |
+
role_prefix = user_prefix
|
| 55 |
+
elif role == "tool":
|
| 56 |
+
role_prefix = tool_prefix
|
| 57 |
+
res = self._tokenize_with_turn(role_prefix, prefix + message, not_first_turn)
|
| 58 |
+
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
|
| 59 |
+
|
| 60 |
+
elif role in ["model", "gpt"]:
|
| 61 |
+
if not prefix:
|
| 62 |
+
res = self._tokenize_with_turn(assistant_prefix, message, not_first_turn)
|
| 63 |
+
labels = self._get_labels(res, loss, not_first_turn)
|
| 64 |
+
else:
|
| 65 |
+
res_prefix = self._tokenize_with_turn(assistant_prefix, prefix, not_first_turn, add_eos_token=False)
|
| 66 |
+
labels_prefix = [IGNORE_TOKEN_ID] * len(res_prefix["input_ids"])
|
| 67 |
+
|
| 68 |
+
res_message = self._tokenize(message.rstrip(), add_eos_token=True, strip_bos_token=True)
|
| 69 |
+
labels_message = [*copy.deepcopy(res_message["input_ids"])] if loss else [IGNORE_TOKEN_ID] * len(res_message["input_ids"])
|
| 70 |
+
|
| 71 |
+
res = {
|
| 72 |
+
"input_ids": res_prefix["input_ids"] + res_message["input_ids"],
|
| 73 |
+
"attention_mask": res_prefix["attention_mask"] + res_message["attention_mask"]
|
| 74 |
+
}
|
| 75 |
+
labels = labels_prefix + labels_message
|
| 76 |
+
else:
|
| 77 |
+
LOG.warning(f"unknown role in conversation: {role}")
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
+
part_length = len(res["input_ids"])
|
| 81 |
+
if total_length + part_length > self.sequence_len:
|
| 82 |
+
break
|
| 83 |
+
|
| 84 |
+
tokenized_parts.append({
|
| 85 |
+
"input_ids": res["input_ids"],
|
| 86 |
+
"attention_mask": res["attention_mask"],
|
| 87 |
+
"labels": labels,
|
| 88 |
+
"role": role,
|
| 89 |
+
"loss": loss
|
| 90 |
+
})
|
| 91 |
+
total_length += part_length
|
| 92 |
+
not_first_turn = True
|
| 93 |
+
|
| 94 |
+
result = {
|
| 95 |
+
"input_ids": [],
|
| 96 |
+
"attention_mask": [],
|
| 97 |
+
"labels": []
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Check if the last turn is a human/user/system turn or loss = False
|
| 102 |
+
while tokenized_parts and (tokenized_parts[-1]["role"] in ["human", "user", "system"] or not tokenized_parts[-1]["loss"]):
|
| 103 |
+
tokenized_parts.pop()
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# Ensure we have at least one user/human/system turn, if not return
|
| 107 |
+
if not any(part["role"] in ["human", "user", "system"] for part in tokenized_parts):
|
| 108 |
+
return result
|
| 109 |
+
|
| 110 |
+
# Ensure we have at least one gpt/model turn, if not return
|
| 111 |
+
if not any(part["role"] in ["model", "gpt"] for part in tokenized_parts):
|
| 112 |
+
return result
|
| 113 |
+
|
| 114 |
+
# Concatenate the final result
|
| 115 |
+
for part in tokenized_parts:
|
| 116 |
+
result["input_ids"] += part["input_ids"]
|
| 117 |
+
result["attention_mask"] += part["attention_mask"]
|
| 118 |
+
result["labels"] += part["labels"]
|
| 119 |
+
|
| 120 |
+
return result
|
| 121 |
+
|
| 122 |
+
def _tokenize_with_turn(self, role_prefix, message, not_first_turn, add_eos_token=True):
|
| 123 |
+
full_message = (turn_separator if not_first_turn else "") + role_prefix + message.strip()
|
| 124 |
+
return self._tokenize(full_message, add_eos_token=add_eos_token, strip_bos_token=not_first_turn)
|
| 125 |
+
|
| 126 |
+
def _get_labels(self, res, loss, not_first_turn):
|
| 127 |
+
if not loss:
|
| 128 |
+
return [IGNORE_TOKEN_ID] * len(res["input_ids"])
|
| 129 |
+
|
| 130 |
+
prefix_len = len(self.bot_prefix_token_ids + (self.turn_separator_token_ids if not_first_turn else []))
|
| 131 |
+
return [IGNORE_TOKEN_ID] * prefix_len + [*copy.deepcopy(res["input_ids"])][prefix_len:]
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class DanChatMLPrompter:
|
| 135 |
+
"""
|
| 136 |
+
Prompter for DanChatML.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
def __init__(self, *args, **kwargs):
|
| 140 |
+
pass
|
| 141 |
+
|
| 142 |
+
def build_prompt(self, source, *args, **kwargs) -> Generator[Tuple[str, str, bool, str], None, None]:
|
| 143 |
+
for msg in source:
|
| 144 |
+
from_value = msg["from"]
|
| 145 |
+
message_value = msg["value"]
|
| 146 |
+
|
| 147 |
+
# Set loss based on the message source
|
| 148 |
+
loss = msg.get("loss")
|
| 149 |
+
if loss is None:
|
| 150 |
+
loss = True if from_value in ["gpt", "model"] else None
|
| 151 |
+
|
| 152 |
+
# Set prefix, defaulting to an empty string if not present
|
| 153 |
+
prefix = msg.get("prefix", "")
|
| 154 |
+
|
| 155 |
+
yield from_value, message_value, loss, prefix
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def load(tokenizer, cfg):
|
| 159 |
+
return DanChatMLPromptTokenizingStrategy(DanChatMLPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
|