Upload script(1).py
Browse files- script(1).py +208 -0
script(1).py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from unsloth import FastModel
|
| 2 |
+
import torch
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
# Model setup
|
| 6 |
+
model, tokenizer = FastModel.from_pretrained(
|
| 7 |
+
model_name = "NewEden/Gemma-Merged-V2",
|
| 8 |
+
max_seq_length = 8192,
|
| 9 |
+
load_in_4bit = False,
|
| 10 |
+
load_in_8bit = False,
|
| 11 |
+
full_finetuning = False,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
# Add LoRA adapters
|
| 15 |
+
model = FastModel.get_peft_model(
|
| 16 |
+
model,
|
| 17 |
+
finetune_vision_layers=False,
|
| 18 |
+
finetune_language_layers=True,
|
| 19 |
+
finetune_attention_modules=True,
|
| 20 |
+
finetune_mlp_modules=True,
|
| 21 |
+
target_modules=[
|
| 22 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
| 23 |
+
"gate_proj", "up_proj", "down_proj"
|
| 24 |
+
],
|
| 25 |
+
r=64,
|
| 26 |
+
lora_alpha=32,
|
| 27 |
+
lora_dropout=0.1,
|
| 28 |
+
bias="none",
|
| 29 |
+
random_state=3407,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Set up chat template
|
| 33 |
+
from unsloth.chat_templates import get_chat_template
|
| 34 |
+
tokenizer = get_chat_template(
|
| 35 |
+
tokenizer,
|
| 36 |
+
chat_template="gemma-3",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Load dataset
|
| 40 |
+
from datasets import load_dataset, Dataset, Features, Sequence, Value
|
| 41 |
+
print("Loading dataset...")
|
| 42 |
+
dataset = load_dataset(
|
| 43 |
+
"NewEden/Light-Novels-Roleplay-Logs-Books-Oh-My",
|
| 44 |
+
split="train"
|
| 45 |
+
)
|
| 46 |
+
print(f"Dataset loaded with {len(dataset)} examples.")
|
| 47 |
+
|
| 48 |
+
# Clean + fix
|
| 49 |
+
def validate_and_fix_conversations(examples):
|
| 50 |
+
fixed = []
|
| 51 |
+
for conv in examples["conversations"]:
|
| 52 |
+
if not isinstance(conv, list):
|
| 53 |
+
continue
|
| 54 |
+
cleaned = []
|
| 55 |
+
for turn in conv:
|
| 56 |
+
if not isinstance(turn, dict):
|
| 57 |
+
continue
|
| 58 |
+
role = turn.get("role", "").lower()
|
| 59 |
+
content = turn.get("content", "")
|
| 60 |
+
if not isinstance(content, str) or not content.strip():
|
| 61 |
+
continue
|
| 62 |
+
if role == "system":
|
| 63 |
+
continue
|
| 64 |
+
if role in ["assistant", "bot", "chatbot"]:
|
| 65 |
+
role = "model"
|
| 66 |
+
elif role in ["human", "usr", "user"]:
|
| 67 |
+
role = "user"
|
| 68 |
+
else:
|
| 69 |
+
continue
|
| 70 |
+
cleaned.append({"role": role, "content": content})
|
| 71 |
+
|
| 72 |
+
if len(cleaned) < 2:
|
| 73 |
+
continue
|
| 74 |
+
|
| 75 |
+
if cleaned[0]["role"] != "user":
|
| 76 |
+
cleaned = cleaned[1:]
|
| 77 |
+
|
| 78 |
+
fixed_conv = []
|
| 79 |
+
expected = "user"
|
| 80 |
+
for turn in cleaned:
|
| 81 |
+
if turn["role"] == expected:
|
| 82 |
+
fixed_conv.append(turn)
|
| 83 |
+
expected = "model" if expected == "user" else "user"
|
| 84 |
+
|
| 85 |
+
if fixed_conv and fixed_conv[-1]["role"] == "user":
|
| 86 |
+
fixed_conv = fixed_conv[:-1]
|
| 87 |
+
|
| 88 |
+
if len(fixed_conv) >= 2:
|
| 89 |
+
fixed.append(fixed_conv)
|
| 90 |
+
|
| 91 |
+
return {"conversations": fixed}
|
| 92 |
+
|
| 93 |
+
print("Validating and fixing conversations...")
|
| 94 |
+
dataset = dataset.map(
|
| 95 |
+
validate_and_fix_conversations,
|
| 96 |
+
batched=True,
|
| 97 |
+
desc="Fixing conversations"
|
| 98 |
+
)
|
| 99 |
+
print(f"Validation complete. {len(dataset)} examples left.")
|
| 100 |
+
|
| 101 |
+
# Fallback dummy
|
| 102 |
+
if len(dataset) == 0:
|
| 103 |
+
print("Dataset empty after validation. Creating dummy data...")
|
| 104 |
+
dummy_conversations = [
|
| 105 |
+
[
|
| 106 |
+
{"role": "user", "content": "Hey, what's up?"},
|
| 107 |
+
{"role": "model", "content": "All good! How can I help?"}
|
| 108 |
+
]
|
| 109 |
+
]
|
| 110 |
+
flat_examples = []
|
| 111 |
+
for conv in dummy_conversations:
|
| 112 |
+
flat_examples.append({
|
| 113 |
+
"conversations": [{"from": msg["role"], "value": msg["content"]} for msg in conv]
|
| 114 |
+
})
|
| 115 |
+
features = Features({'conversations': Sequence({'from': Value('string'), 'value': Value('string')})})
|
| 116 |
+
dataset = Dataset.from_list(flat_examples, features=features)
|
| 117 |
+
print(f"Dummy dataset created with {len(dataset)} example.")
|
| 118 |
+
|
| 119 |
+
# Enforce strict alternation
|
| 120 |
+
def enforce_strict_user_model_pairs(examples):
|
| 121 |
+
fixed = []
|
| 122 |
+
for convo in examples["conversations"]:
|
| 123 |
+
if not isinstance(convo, list):
|
| 124 |
+
continue
|
| 125 |
+
last = None
|
| 126 |
+
valid = True
|
| 127 |
+
for turn in convo:
|
| 128 |
+
if turn["role"] == last:
|
| 129 |
+
valid = False
|
| 130 |
+
break
|
| 131 |
+
last = turn["role"]
|
| 132 |
+
if valid and convo[0]["role"] == "user" and convo[-1]["role"] == "model":
|
| 133 |
+
fixed.append(convo)
|
| 134 |
+
return {"conversations": fixed}
|
| 135 |
+
|
| 136 |
+
print("Enforcing strict user/model alternation...")
|
| 137 |
+
dataset = dataset.map(
|
| 138 |
+
enforce_strict_user_model_pairs,
|
| 139 |
+
batched=True,
|
| 140 |
+
desc="Filtering strict alternation"
|
| 141 |
+
)
|
| 142 |
+
print(f"After enforcing alternation: {len(dataset)} examples left.")
|
| 143 |
+
|
| 144 |
+
# Apply chat template
|
| 145 |
+
def apply_chat_template(examples):
|
| 146 |
+
texts = tokenizer.apply_chat_template(examples["conversations"])
|
| 147 |
+
return {"text": texts}
|
| 148 |
+
|
| 149 |
+
print("Applying chat template...")
|
| 150 |
+
dataset = dataset.map(
|
| 151 |
+
apply_chat_template,
|
| 152 |
+
batched=True,
|
| 153 |
+
desc="Applying chat template"
|
| 154 |
+
)
|
| 155 |
+
print(f"Chat template applied. {len(dataset)} examples ready.")
|
| 156 |
+
print("Sample text after templating:")
|
| 157 |
+
print(dataset[0]["text"][:500] + "...")
|
| 158 |
+
|
| 159 |
+
# Training
|
| 160 |
+
from trl import SFTTrainer, SFTConfig
|
| 161 |
+
trainer = SFTTrainer(
|
| 162 |
+
model=model,
|
| 163 |
+
tokenizer=tokenizer,
|
| 164 |
+
train_dataset=dataset,
|
| 165 |
+
eval_dataset=None,
|
| 166 |
+
args=SFTConfig(
|
| 167 |
+
dataset_text_field="text",
|
| 168 |
+
per_device_train_batch_size=1,
|
| 169 |
+
gradient_accumulation_steps=2,
|
| 170 |
+
warmup_steps=35,
|
| 171 |
+
num_train_epochs=4,
|
| 172 |
+
learning_rate=1e-5,
|
| 173 |
+
logging_steps=1,
|
| 174 |
+
optim="paged_adamw_8bit",
|
| 175 |
+
weight_decay=0.02,
|
| 176 |
+
lr_scheduler_type="linear",
|
| 177 |
+
seed=3407,
|
| 178 |
+
report_to="wandb",
|
| 179 |
+
),
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
from unsloth.chat_templates import train_on_responses_only
|
| 183 |
+
print("Setting up response-only training...")
|
| 184 |
+
trainer = train_on_responses_only(
|
| 185 |
+
trainer,
|
| 186 |
+
instruction_part="<start_of_turn>user\n",
|
| 187 |
+
response_part="<start_of_turn>model\n",
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
| 191 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
| 192 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
| 193 |
+
print(f"GPU = {gpu_stats.name} ({max_memory} GB total)")
|
| 194 |
+
print(f"Starting reserved memory = {start_gpu_memory} GB")
|
| 195 |
+
|
| 196 |
+
print("Starting training...")
|
| 197 |
+
trainer_stats = trainer.train()
|
| 198 |
+
|
| 199 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
| 200 |
+
used_for_lora = round(used_memory - start_gpu_memory, 3)
|
| 201 |
+
print(f"Training took {trainer_stats.metrics['train_runtime']} seconds "
|
| 202 |
+
f"({round(trainer_stats.metrics['train_runtime']/60, 2)} minutes).")
|
| 203 |
+
print(f"Peak memory: {used_memory} GB. Used for LoRA: {used_for_lora} GB.")
|
| 204 |
+
|
| 205 |
+
output_dir = "./gemma-finetuned"
|
| 206 |
+
model.save_pretrained(output_dir)
|
| 207 |
+
tokenizer.save_pretrained(output_dir)
|
| 208 |
+
print(f"Model saved at {output_dir}")
|