Datasets:
Upload latent2video.py
Browse files- latent2video.py +154 -0
latent2video.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Union, List
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from diffusers import AutoencoderKLWan
|
| 9 |
+
from diffusers.video_processor import VideoProcessor
|
| 10 |
+
from diffusers.utils import export_to_video
|
| 11 |
+
|
| 12 |
+
def save_images_as_gif(images: List[Image.Image], save_path: str, fps=8) -> None:
|
| 13 |
+
|
| 14 |
+
images[0].save(
|
| 15 |
+
save_path,
|
| 16 |
+
save_all=True,
|
| 17 |
+
append_images=images[1:],
|
| 18 |
+
loop=0,
|
| 19 |
+
duration=int(1000 / fps),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
def save_video_to_dir(video_frames, save_dir, save_suffix, save_type='frame', fps=8):
|
| 23 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
save_type_list = save_type.split('_')
|
| 26 |
+
|
| 27 |
+
# save frame
|
| 28 |
+
if 'frame' in save_type_list:
|
| 29 |
+
frame_save_dir = os.path.join(save_dir, 'frames')
|
| 30 |
+
os.makedirs(frame_save_dir, exist_ok=True)
|
| 31 |
+
for idx, img in enumerate(video_frames):
|
| 32 |
+
img.save(os.path.join(frame_save_dir, f'{idx:05d}_{save_suffix}.jpg'))
|
| 33 |
+
|
| 34 |
+
# save to gif
|
| 35 |
+
if 'gif' in save_type_list:
|
| 36 |
+
gif_save_path = os.path.join(save_dir, f'{save_suffix}.gif')
|
| 37 |
+
save_images_as_gif(video_frames, gif_save_path, fps=fps)
|
| 38 |
+
|
| 39 |
+
# save to video
|
| 40 |
+
if 'mp4' in save_type_list:
|
| 41 |
+
video_save_path = os.path.join(save_dir, f'{save_suffix}.mp4')
|
| 42 |
+
export_to_video(video_frames, video_save_path, fps=fps)
|
| 43 |
+
|
| 44 |
+
def setup_vae(model_path: str, device: torch.device) -> AutoencoderKLWan:
|
| 45 |
+
"""
|
| 46 |
+
Initialize and setup the VAE model.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
model_path: Path to the VAE model
|
| 50 |
+
device: Target device for model execution
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
Initialized VAE model
|
| 54 |
+
"""
|
| 55 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 56 |
+
model_path,
|
| 57 |
+
subfolder="vae",
|
| 58 |
+
torch_dtype=torch.float32
|
| 59 |
+
).eval().to(device)
|
| 60 |
+
|
| 61 |
+
# Ensure all parameters are float32
|
| 62 |
+
for param in vae.parameters():
|
| 63 |
+
param.data = param.data.to(torch.float32)
|
| 64 |
+
|
| 65 |
+
return vae
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def process_latents(latents: torch.Tensor, vae: nn.Module, device: torch.device) -> torch.Tensor:
|
| 69 |
+
"""
|
| 70 |
+
Process and denormalize latent vectors if necessary.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
latents: Input latent vectors
|
| 74 |
+
vae: VAE model containing normalization parameters
|
| 75 |
+
device: Target device for processing
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
Processed latent vectors
|
| 79 |
+
"""
|
| 80 |
+
# Ensure latents are in correct shape [B, C, T, H, W]
|
| 81 |
+
if len(latents.shape) == 4:
|
| 82 |
+
latents = latents.unsqueeze(0)
|
| 83 |
+
|
| 84 |
+
# Apply denormalization if mean/std are available
|
| 85 |
+
if hasattr(vae.config, 'latents_mean') and hasattr(vae.config, 'latents_std'):
|
| 86 |
+
latents_mean = torch.tensor(vae.config.latents_mean, device=device, dtype=torch.float32).view(1, -1, 1, 1, 1)
|
| 87 |
+
latents_std = 1.0 / torch.tensor(vae.config.latents_std, device=device, dtype=torch.float32).view(1, -1, 1, 1, 1)
|
| 88 |
+
return latents / latents_std + latents_mean
|
| 89 |
+
|
| 90 |
+
return latents
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def latent_to_video(latent_path: Union[str, Path], output_path: Union[str, Path]) -> None:
|
| 94 |
+
"""
|
| 95 |
+
Convert latent vectors to video frames and save as MP4.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
latent_path: Path to the latent file (.pth)
|
| 99 |
+
output_path: Path to save the output video (.mp4)
|
| 100 |
+
"""
|
| 101 |
+
# Setup device and paths
|
| 102 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 103 |
+
latent_path = Path(latent_path)
|
| 104 |
+
output_path = Path(output_path)
|
| 105 |
+
|
| 106 |
+
# Initialize VAE model
|
| 107 |
+
vae = setup_vae("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", device)
|
| 108 |
+
|
| 109 |
+
# Load and process latents
|
| 110 |
+
latent_dict = torch.load(latent_path, map_location=device)
|
| 111 |
+
latents = latent_dict['latents'].to(torch.float32)
|
| 112 |
+
processed_latents = process_latents(latents, vae, device)
|
| 113 |
+
|
| 114 |
+
# Setup video processor
|
| 115 |
+
vae_scale_factor = 2 ** len(vae.temperal_downsample) if getattr(vae, "vae", None) else 8
|
| 116 |
+
video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor)
|
| 117 |
+
|
| 118 |
+
# Generate video frames
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
video_frames = vae.decode(processed_latents, return_dict=False)[0]
|
| 121 |
+
|
| 122 |
+
# Post-process and save video
|
| 123 |
+
video_frames = video_processor.postprocess_video(video_frames, output_type="np")
|
| 124 |
+
save_video_to_dir(
|
| 125 |
+
video_frames[0],
|
| 126 |
+
save_dir=str(output_path.parent),
|
| 127 |
+
save_suffix=output_path.stem,
|
| 128 |
+
save_type='mp4',
|
| 129 |
+
fps=16
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def main():
|
| 134 |
+
"""Parse command line arguments and run the conversion."""
|
| 135 |
+
parser = argparse.ArgumentParser(description="Convert latent vectors to video")
|
| 136 |
+
parser.add_argument('--latent', type=str, required=True, help='Path to the .pth latent file')
|
| 137 |
+
parser.add_argument('--output', type=str, required=True, help='Path to save the output .mp4 video')
|
| 138 |
+
args = parser.parse_args()
|
| 139 |
+
|
| 140 |
+
latent_path = Path(args.latent)
|
| 141 |
+
output_path = Path(args.output)
|
| 142 |
+
|
| 143 |
+
# Validate input/output formats
|
| 144 |
+
assert latent_path.suffix == '.pth', "Latent file must be a .pth file"
|
| 145 |
+
assert output_path.suffix == '.mp4', "Output file must be a .mp4 file"
|
| 146 |
+
|
| 147 |
+
# Ensure output directory exists
|
| 148 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 149 |
+
|
| 150 |
+
latent_to_video(latent_path, output_path)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
if __name__ == '__main__':
|
| 154 |
+
main()
|