Datasets:

Modalities:
Image
Libraries:
Datasets
License:
act13 commited on
Commit
4878fb1
Β·
verified Β·
1 Parent(s): 85ac510

Initial Update of Dataset Card

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -1,3 +1,43 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # Continually Adapt or Not (CAN) Benchmark
5
+
6
+ The **CAN Benchmark** is a curated ICICLE benchmark designed to evaluate the performance of pre-trained models and support the development of adaptation algorithms in the camera trap domain. By providing a structured, temporally-split dataset, CAN enables research on continual adaptation, domain shifts, and long-term model robustness.
7
+
8
+ ## Dataset Structure
9
+
10
+ The dataset consists of two primary components:
11
+
12
+ 1. **images/**:
13
+ Contains all raw images from the camera trap dataset (CDB-D06).
14
+
15
+ 2. **30/**:
16
+ Contains JSON files that divide the dataset into **30-day intervals** to support continual learning evaluation:
17
+ - `train.json`: Training data split by 30-day intervals
18
+ - `train-all.json`: All training data combined
19
+ - `test.json`: Test data split by 30-day intervals
20
+
21
+ This setup allows researchers to simulate real-world temporal data streams in camera trap applications.
22
+
23
+ ## How to Use
24
+
25
+ Clone or download the dataset using:
26
+
27
+ ```bash
28
+ git lfs install
29
+ git clone https://huggingface.co/datasets/ICICLE-AI/CAN_Benchmark
30
+
31
+ # Unzip the provided archive
32
+ unzip CAN_Benchmark/CDB_D06.zip -d CAN_Benchmark/data
33
+ ```
34
+ You will get the following structure:
35
+ ```
36
+ CAN_Benchmark/
37
+ β”œβ”€β”€ data/
38
+ β”‚ β”œβ”€β”€ images/
39
+ β”‚ └── 30/
40
+ β”‚ β”œβ”€β”€ train.json
41
+ β”‚ β”œβ”€β”€ train-all.json
42
+ β”‚ └── test.json
43
+ ```