Commit
·
b47b74e
1
Parent(s):
25aa1e9
feat: Commit the configurations file
Browse files
nucleotide_transformer_downstream_tasks.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script
|
| 2 |
+
# contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Script for the dataset containing all the downstream tasks from the Nucleotide
|
| 16 |
+
Transformer paper. There are 18 downstream tasks."""
|
| 17 |
+
|
| 18 |
+
from typing import List
|
| 19 |
+
import datasets
|
| 20 |
+
from Bio import SeqIO
|
| 21 |
+
|
| 22 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 23 |
+
_CITATION = """\
|
| 24 |
+
@article{dalla2023nucleotide,
|
| 25 |
+
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
|
| 26 |
+
author={Dalla-Torre, Hugo and Gonzalez, Liam and Mendoza-Revilla, Javier and Carranza, Nicolas Lopez and Grzywaczewski, Adam Henryk and Oteri, Francesco and Dallago, Christian and Trop, Evan and Sirelkhatim, Hassan and Richard, Guillaume and others},
|
| 27 |
+
journal={bioRxiv},
|
| 28 |
+
pages={2023--01},
|
| 29 |
+
year={2023},
|
| 30 |
+
publisher={Cold Spring Harbor Laboratory}
|
| 31 |
+
}
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
# You can copy an official description
|
| 35 |
+
_DESCRIPTION = """\
|
| 36 |
+
18 classification downstream tasks from the Nucleotide Transformer paper. Each task
|
| 37 |
+
corresponds to a dataset configuration.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_HOMEPAGE = "https://github.com/instadeepai/nucleotide-transformer"
|
| 41 |
+
|
| 42 |
+
_LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"
|
| 43 |
+
|
| 44 |
+
_TASKS = [
|
| 45 |
+
'H4ac',
|
| 46 |
+
'H3K36me3',
|
| 47 |
+
'splice_sites_donors',
|
| 48 |
+
'splice_sites_acceptors',
|
| 49 |
+
'H3',
|
| 50 |
+
'H4',
|
| 51 |
+
'H3K4me3',
|
| 52 |
+
'splice_sites_all',
|
| 53 |
+
'H3K4me1',
|
| 54 |
+
'H3K14ac',
|
| 55 |
+
'enhancers_types',
|
| 56 |
+
'promoter_no_tata',
|
| 57 |
+
'H3K79me3',
|
| 58 |
+
'H3K4me2',
|
| 59 |
+
'promoter_tata',
|
| 60 |
+
'enhancers',
|
| 61 |
+
'H3K9ac',
|
| 62 |
+
'promoter_all'
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
|
| 67 |
+
"""BuilderConfig for The Nucleotide Transformer downstream taks dataset."""
|
| 68 |
+
|
| 69 |
+
def __init__(self, *args, task: str, **kwargs):
|
| 70 |
+
"""BuilderConfig downstream tasks dataset.
|
| 71 |
+
Args:
|
| 72 |
+
task (:obj:`str`): Task name.
|
| 73 |
+
**kwargs: keyword arguments forwarded to super.
|
| 74 |
+
"""
|
| 75 |
+
super().__init__(
|
| 76 |
+
*args,
|
| 77 |
+
name=f'{task}',
|
| 78 |
+
**kwargs,
|
| 79 |
+
)
|
| 80 |
+
self.task = task
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
|
| 84 |
+
"""Genomes from 850 species, filtered and split into chunks of consecutive
|
| 85 |
+
nucleotides. 50 genomes are taken for test, 50 for validation and 800
|
| 86 |
+
for training."""
|
| 87 |
+
|
| 88 |
+
VERSION = datasets.Version("1.1.0")
|
| 89 |
+
BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig
|
| 90 |
+
BUILDER_CONFIGS = [
|
| 91 |
+
NucleotideTransformerDownstreamTasksConfig(task=task) for task in _TASKS
|
| 92 |
+
]
|
| 93 |
+
DEFAULT_CONFIG_NAME = "enhancers"
|
| 94 |
+
|
| 95 |
+
def _info(self):
|
| 96 |
+
|
| 97 |
+
features = datasets.Features(
|
| 98 |
+
{
|
| 99 |
+
"sequence": datasets.Value("string"),
|
| 100 |
+
"name": datasets.Value("string"),
|
| 101 |
+
"label": datasets.Value("int32"),
|
| 102 |
+
}
|
| 103 |
+
)
|
| 104 |
+
return datasets.DatasetInfo(
|
| 105 |
+
# This is the description that will appear on the datasets page.
|
| 106 |
+
description=_DESCRIPTION,
|
| 107 |
+
# This defines the different columns of the dataset and their types
|
| 108 |
+
features=features,
|
| 109 |
+
# Homepage of the dataset for documentation
|
| 110 |
+
homepage=_HOMEPAGE,
|
| 111 |
+
# License for the dataset if available
|
| 112 |
+
license=_LICENSE,
|
| 113 |
+
# Citation for the dataset
|
| 114 |
+
citation=_CITATION,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 118 |
+
|
| 119 |
+
train_file = dl_manager.download_and_extract(self.config.task + '/train.fna')
|
| 120 |
+
test_file = dl_manager.download_and_extract(self.config.task + '/test.fna')
|
| 121 |
+
|
| 122 |
+
return [
|
| 123 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 124 |
+
gen_kwargs={"file": train_file}
|
| 125 |
+
),
|
| 126 |
+
datasets.SplitGenerator(name=datasets.Split.TEST,
|
| 127 |
+
gen_kwargs={"file": test_file}
|
| 128 |
+
),
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 132 |
+
def _generate_examples(self, file):
|
| 133 |
+
key = 0
|
| 134 |
+
with open(file, 'rt') as f:
|
| 135 |
+
fasta_sequences = SeqIO.parse(f, 'fasta')
|
| 136 |
+
|
| 137 |
+
for record in fasta_sequences:
|
| 138 |
+
|
| 139 |
+
# parse descriptions in the fasta file
|
| 140 |
+
sequence, name = str(record.seq), str(record.name)
|
| 141 |
+
label = int(name.split("|")[-1])
|
| 142 |
+
|
| 143 |
+
# yield example
|
| 144 |
+
yield key, {
|
| 145 |
+
'sequence': sequence,
|
| 146 |
+
'name': name,
|
| 147 |
+
'label': label,
|
| 148 |
+
}
|
| 149 |
+
key += 1
|