Uploading contents of MONAI-extra-test-data
Browse files- create_data.py +100 -0
- dynunet_0/Dynunet_1.json +1 -0
- dynunet_0/Dynunet_1.pt +3 -0
- dynunet_0/dynunet_0.py +16 -0
- unet_0/Unet_0.json +1 -0
- unet_0/Unet_0.pt +3 -0
create_data.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from typing import Any, Dict, Sequence
|
| 5 |
+
|
| 6 |
+
import monai.networks.nets as nets
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def create_model_test_data(
|
| 10 |
+
model_name: str,
|
| 11 |
+
model_params: Dict[str, Any],
|
| 12 |
+
input_shape: Sequence[int],
|
| 13 |
+
) -> None:
|
| 14 |
+
"""
|
| 15 |
+
Create test data to check model consistency
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
model_class: Name of model to be tested.
|
| 19 |
+
model_params: Dictionary of parameters to construct object.
|
| 20 |
+
input_shape: Tuple of dimensions (B, C, H, W, [D]).
|
| 21 |
+
|
| 22 |
+
.. code-block:: python
|
| 23 |
+
|
| 24 |
+
# network params
|
| 25 |
+
unet_params = {
|
| 26 |
+
"dimensions" : 3,
|
| 27 |
+
"in_channels" : 4,
|
| 28 |
+
"out_channels" : 2,
|
| 29 |
+
"channels": (4, 8, 16, 32),
|
| 30 |
+
"strides": (2, 4, 1),
|
| 31 |
+
"kernel_size" : 5,
|
| 32 |
+
"up_kernel_size" : 3,
|
| 33 |
+
"num_res_units": 2,
|
| 34 |
+
"act": "relu",
|
| 35 |
+
"dropout": 0.1,
|
| 36 |
+
}
|
| 37 |
+
# in shape
|
| 38 |
+
input_shape = (1, unet_params["in_channels"], 64, 64, 64)
|
| 39 |
+
# create data
|
| 40 |
+
create_model_test_data("UNet", unet_params, input_shape)
|
| 41 |
+
"""
|
| 42 |
+
model_name = model_name.lower()
|
| 43 |
+
base_folder = os.path.dirname(os.path.abspath(__file__))
|
| 44 |
+
|
| 45 |
+
# get next unused folder
|
| 46 |
+
i=0
|
| 47 |
+
while True:
|
| 48 |
+
out_folder = os.path.join(base_folder, f"{model_name}_{i}")
|
| 49 |
+
if not os.path.isdir(out_folder):
|
| 50 |
+
print("\n\nCreating output folder: " + out_folder)
|
| 51 |
+
os.mkdir(out_folder)
|
| 52 |
+
break
|
| 53 |
+
i += 1
|
| 54 |
+
out_path_no_ext = os.path.join(out_folder, f"{model_name}_{i}")
|
| 55 |
+
|
| 56 |
+
# Create model
|
| 57 |
+
model = nets.__dict__[model_name](**model_params)
|
| 58 |
+
model.eval()
|
| 59 |
+
|
| 60 |
+
# Create input data
|
| 61 |
+
num_elements = int(torch.Tensor(input_shape).prod())
|
| 62 |
+
in_data = torch.arange(num_elements).reshape(input_shape).float()
|
| 63 |
+
|
| 64 |
+
# Forward pass data
|
| 65 |
+
out_data = model(in_data)
|
| 66 |
+
|
| 67 |
+
# Save in data, out data and model
|
| 68 |
+
data_path = out_path_no_ext + ".pt"
|
| 69 |
+
to_save = {"in_data": in_data, "out_data": out_data, "model": model.state_dict()}
|
| 70 |
+
print("Writing data output to .pt: " + data_path)
|
| 71 |
+
torch.save(to_save, data_path)
|
| 72 |
+
|
| 73 |
+
# Save parameters
|
| 74 |
+
json_params = out_path_no_ext + ".json"
|
| 75 |
+
with open(json_params, "w+") as f:
|
| 76 |
+
print("Writing network parameters to .json: " + json_params)
|
| 77 |
+
json.dump(model_params, f)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# default
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
|
| 84 |
+
# network params
|
| 85 |
+
unet_params = {
|
| 86 |
+
"dimensions" : 3,
|
| 87 |
+
"in_channels" : 4,
|
| 88 |
+
"out_channels" : 2,
|
| 89 |
+
"channels": (4, 8, 16, 32),
|
| 90 |
+
"strides": (2, 4, 1),
|
| 91 |
+
"kernel_size" : 5,
|
| 92 |
+
"up_kernel_size" : 3,
|
| 93 |
+
"num_res_units": 2,
|
| 94 |
+
"act": "relu",
|
| 95 |
+
"dropout": 0.1,
|
| 96 |
+
}
|
| 97 |
+
# in shape
|
| 98 |
+
input_shape = (1, unet_params["in_channels"], 64, 64, 64)
|
| 99 |
+
# create data
|
| 100 |
+
create_model_test_data("UNet", unet_params, input_shape)
|
dynunet_0/Dynunet_1.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"spatial_dims": 3, "in_channels": 4, "out_channels": 2, "kernel_size": [3, 3, 3, 1], "strides": [2, 2, 2, 2], "upsample_kernel_size": [2, 2, 2]}
|
dynunet_0/Dynunet_1.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:662e895f07075f3ab6ca8b5bf7473ba26b57a3525ef6c7b3d4ff85ff4907d63c
|
| 3 |
+
size 11569537
|
dynunet_0/dynunet_0.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from create_data import create_model_test_data
|
| 2 |
+
strides = (2, 2, 2, 2)
|
| 3 |
+
|
| 4 |
+
# network params
|
| 5 |
+
params = {
|
| 6 |
+
"spatial_dims": 3,
|
| 7 |
+
"in_channels": 4,
|
| 8 |
+
"out_channels": 2,
|
| 9 |
+
"kernel_size": (3, 3, 3, 1),
|
| 10 |
+
"strides": strides,
|
| 11 |
+
"upsample_kernel_size": strides[1:],
|
| 12 |
+
}
|
| 13 |
+
# in shape
|
| 14 |
+
input_shape = (1, params["in_channels"], 64, 64, 64)
|
| 15 |
+
# create data
|
| 16 |
+
create_model_test_data("DynUNet", params, input_shape)
|
unet_0/Unet_0.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"spatial_dims": 3, "in_channels": 4, "out_channels": 2, "channels": [4, 8, 16, 32], "strides": [2, 4, 1], "kernel_size": 5, "up_kernel_size": 3, "num_res_units": 2, "act": "relu", "dropout": 0.1}
|
unet_0/Unet_0.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09573859799471a60debc13635cb79a5cf6c7351c443399a65491a89294545d3
|
| 3 |
+
size 7453957
|