File size: 16,931 Bytes
5823363 e48f95d e13fa2f e48f95d e13fa2f e48f95d 5e3c8fb e48f95d 5e3c8fb e48f95d 5e3c8fb e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d e13fa2f e48f95d 5e3c8fb e48f95d e13fa2f e48f95d 5e3c8fb e13fa2f 5e3c8fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
pretty_name: SimWorld Unreal Backend (Binary + Paks)
license: apache-2.0
language:
- en
tags:
- simulation
- unreal-engine
- binaries
- paks
- robotics
- multimodal
- agents
task_categories:
- other
size_categories:
- n<1K
---
# SimWorld: An Open-ended Realistic Simulator for Autonomous Agents in Physical and Social Worlds
<p align="center">
<img src="https://github.com/user-attachments/assets/5d2da588-9470-44ef-82a9-5d45d592497a" width="840" height="795" alt="image" />
</p>
**SimWorld** is a simulation platform for developing and evaluating **LLM/VLM** AI agents in complex physical and social environments.
<div align="center">
<a href="https://simworld-ai.github.io/"><img src="https://img.shields.io/badge/Website-SimWorld-blue" alt="Website" /></a>
<a href="https://github.com/maitrix-org/SimWorld"><img src="https://img.shields.io/github/stars/maitrix-org/SimWorld?style=social" alt="GitHub Stars" /></a>
<a href="https://simworld.readthedocs.io/en/latest"><img src="https://img.shields.io/badge/Documentation-Read%20Docs-green" alt="Documentation" /></a>
<a href="https://arxiv.org/abs/2512.01078"><img src="https://img.shields.io/badge/arXiv-2512.01078-b31b1b?logo=arxiv&logoColor=white" alt="arXiv:2512.01078" /></a>
</div>
## 🎬 Demonstration
<!-- <p align="center">
<a href="https://youtu.be/-e19MzwDhy4" target="_blank" rel="noopener noreferrer">
<img
src="https://img.youtube.com/vi/-e19MzwDhy4/0.jpg"
alt="SimWorld Demo Video"
/>
</a>
</p> -->
<p align="center">
<a href="https://www.youtube.com/watch?v=SfOifXTupgY" target="_blank" rel="noopener noreferrer">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6700678116bb14dfc9750d02/fzcesbX2oyJ4bfFv9Ed7E.jpeg" width="840">
</img>
</a>
</p>
<p align="center">
<a href="https://www.youtube.com/@SimWorld-AI" target="_blank" rel="noopener noreferrer">
▶ See all our demo videos on YouTube
</a>
</p>
## 🔥 News
- 2026.1 **SimWorld** now supports importing customized environments and agents!
- 2025.11 The white paper of **SimWorld** is available on arxiv!
- 2025.9 **SimWorld** has been accepted to NeurIPS 2025 main track as a **spotlight** paper! 🎉
- 2025.6 The first formal release of **SimWorld** has been published! 🚀
- 2025.3 Our demo of **SimWorld** has been accepted by CVPR 2025 Demonstration Track! 🎉
## 💡 Introduction
SimWorld is built on Unreal Engine 5 and offers core capabilities to meet the needs of modern agent development. It provides:
- Realistic, open-ended world simulation with accurate physics and language-based procedural generation.
- Rich interface for LLM/VLM agents, supporting multi-modal perception and natural language actions.
- Diverse and customizable physical and social reasoning scenarios, enabling systematic training and evaluation of complex agent behaviors like navigation, planning, and strategic cooperation.
## 🏗️ Architecture
<p align="center">
<img width="799" height="671" alt="image" src="https://github.com/user-attachments/assets/2e67356a-7dca-4eba-ab57-de1226e080bb" />
</p>
**SimWorld** consists of three layers:
- the Unreal Engine Backend, providing diverse and open-ended environments, rich assets and realistic physics simulation;
- the Environment layer, supporting procedural city generation, language-driven scene editing, gym-like APIs for LLM/VLM agents and traffic simulation;
- the Agent layer, enabling LLM/VLM agents to reason over multimodal observations and history while executing actions via a local action planner.
SimWorld's architecture is designed to be modular and flexible, supporting an array of functionalities such as dynamic world generation, agent control, and performance benchmarking. The components are seamlessly integrated to provide a robust platform for **Embodied AI** and **Agents** research and applications.
### Project Structure
```bash
simworld/ # Python package
local_planner/ # Local action planner component
agent/ # Agent system
assets_rp/ # Live editor component for retrieval and re-placing
citygen/ # City layout procedural generator
communicator/ # Core component to connect Unreal Engine
config/ # Configuration loader and default config file
llm/ # Basic llm class
map/ # Basic map class and waypoint system
traffic/ # Traffic system
utils/ # Utility functions
data/ # Default data files, e.g., object categories
weather/ # Weather system
data/ # Necessary input data
config/ # Example configuration file and user configuration file
examples/ # Examples of usage, such as layout generation and traffic simulation
docs/ # Documentation source files
README.md
```
## ⚙️ Setup
This section walks through the minimal setup to run SimWorld using our provided UE packages and the Python client. If you want to use your own custom environments, assets, or agent models, you can import them via `.pak` files. See [Make Your SimWorld](#make-your-simworld) for instructions.
**System Requirements:** SimWorld requires Windows or Linux operating system, a dedicated GPU with ≥6GB VRAM, 32GB RAM, and 50-200GB disk space depending on the package. For detailed hardware requirements and recommendations, see the [installation guide](https://simworld.readthedocs.io/en/latest/getting_started/installation.html).
### Installation
#### Step 1. Install the Python Client
Make sure to use Python 3.10 or later.
```bash
git clone https://github.com/SimWorld-AI/SimWorld.git
cd SimWorld
conda create -n simworld python=3.10
conda activate simworld
pip install -e .
```
#### Step 2. Download the UE Server Package
First, download and extract the **Base** UE server package for your OS. The Base package includes two lightweight city scenes and one empty map for quickly testing SimWorld’s core features, including core agent interaction and procedural city generation.
- **Base (required, 2 city maps and 1 empty map)**
- **Windows:** [Download](https://huggingface.co/datasets/SimWorld-AI/SimWorld/resolve/main/Base/Windows.zip)
- **Linux:** [Download](https://huggingface.co/datasets/SimWorld-AI/SimWorld/resolve/main/Base/Linux.zip)
If you want more pre-built scenes for demos and diverse scenarios, you can optionally install **Additional Environments (100+ Maps)**. This is an add-on map pack that extends the Base installation. Download the maps you need and copy the `.pak` files into the Base server folder at:
`SimWorld/Content/Paks/`.
- **Additional Environments (optional, 100+ maps)**
- **Windows:** [Download](https://huggingface.co/datasets/SimWorld-AI/SimWorld/tree/main/AdditionEnvironmentPaks/Windows)
- **Linux:** [Download](https://huggingface.co/datasets/SimWorld-AI/SimWorld/tree/main/AdditionEnvironmentPaks/Linux)
The Additional Environments package is organized as separate `.pak` files, so you can download only the maps you need. Please check the [download and installation](https://simworld.readthedocs.io/en/latest/getting_started/additional_environments.html#download-and-installation) for usage instructions, including how to load specific maps and what each `.pak` contains.
### Quick Start
We provide several examples of code in [examples/](examples/), showcasing how to use the basic functionalities of SimWorld, including city layout generation, traffic simulation, asset retrieval, and activity-to-actions. Please follow the examples to see how SimWorld works.
#### Step 1. Start the UE Server
Start the SimWorld UE server first, then run the Python examples. From the extracted UE server package directory:
- **Windows:** double-click `SimWorld.exe`, or launch it from the command line:
```bash
./SimWorld.exe <MAP_PATH>
```
- **Linux:** run:
```bash
./SimWorld.sh <MAP_PATH>
```
`<MAP_PATH>` refers to the Unreal Engine internal path to a map file (e.g., `/Game/hospital/map/demo.umap`). SimWorld's **base** binary contains 2 city maps and 1 empty map. See [Base Environments](https://simworld.readthedocs.io/en/latest/getting_started/base_environments.html) for details. In addition, users can download 100+ **additional environment paks**. See the [Additional Environments](https://simworld.readthedocs.io/en/latest/getting_started/additional_environments.html) for the installation and complete list of available map paths. If `<MAP_PATH>` is not specified, the default map (`/Game/Maps/demo_1`) will be open.
#### Step 2. Run a Minimal Gym-Style Example
Once the SimWorld UE5 environment is running, you can connect from Python and control an in-world humanoid agent in just a few lines. The full demo is provided in [examples/gym_interface_demo.ipynb](examples/gym_interface_demo.ipynb). You can also run other example scripts/notebooks under [examples/](examples/).
```python
from simworld.communicator.unrealcv import UnrealCV
from simworld.communicator.communicator import Communicator
from simworld.agent.humanoid import Humanoid
from simworld.utils.vector import Vector
from simworld.llm.base_llm import BaseLLM
from simworld.local_planner.local_planner import LocalPlanner
from simworld.llm.a2a_llm import A2ALLM
class Agent:
def __init__(self, goal):
self.goal = goal
self.llm = BaseLLM("gpt-4o")
self.system_prompt = f"You are an intelligent agent in a 3D world. Your goal is to: {self.goal}."
def action(self, obs):
prompt = f"{self.system_prompt}\n You are currently at: {obs}\nWhat is your next action?"
action = self.llm.generate_text(system_prompt=self.system_prompt, user_prompt=prompt)
return action
class Environment:
def __init__(self, comm: Communicator):
self.comm = comm
self.agent: Humanoid | None = None
self.action_planner = None
self.agent_name: str | None = None
self.target: Vector | None = None
self.action_planner_llm = A2ALLM(model_name="gpt-4o-mini")
def reset(self):
"""Clear the UE scene and (re)spawn the humanoid and target."""
# Clear spawned objects
self.comm.clear_env()
# Blueprint path for the humanoid agent to spawn in the UE level
agent_bp = "/Game/TrafficSystem/Pedestrian/Base_User_Agent.Base_User_Agent_C"
# Initial spawn position and facing direction for the humanoid (2D)
spawn_location, spawn_forward = Vector(0, 0), Vector(0, 1)
self.agent = Humanoid(spawn_location, spawn_forward)
self.action_planner = LocalPlanner(agent=self.agent, model=self.action_planner_llm, rule_based=False)
# Spawn the humanoid agent in the Unreal world
self.comm.spawn_agent(self.agent, name=None, model_path=agent_bp, type="humanoid")
# Define a target position the agent is encouraged to move toward (example value)
self.target = Vector(1700, -1700)
# Return initial observation (optional, but RL-style)
observation = self.communicator.unrealcv.get_location(self.agent_name)
ret = Vector(observation[0], observation[1])
return ret
def step(self, action):
"""Use action planner to execute the given action."""
# Parse the action text and map it to the action space
primitive_actions = self.action_planner.parse(action)
self.action_planner.execute(primitive_actions)
# Get current location from UE (x, y, z) and convert to 2D Vector
location = Vector(*self.comm.unrealcv.get_location(self.agent)[:2])
observation = location
self.agent.position = location
# Reward: negative Euclidean distance in 2D plane
reward = -location.distance(self.target)
return observation, reward
if __name__ == "__main__":
# Connect to the running Unreal Engine instance via UnrealCV
ucv = UnrealCV()
comm = Communicator(ucv)
# Create the environment wrapper
agent = Agent(goal='Go to (1700, -1700).')
env = Environment(comm)
obs = env.reset()
# Roll out a short trajectory
for _ in range(100):
action = agent.action(obs)
obs, reward = env.step(action)
print(f"obs: {obs}, reward: {reward}")
# Plug this into your RL loop / logging as needed
```
## 📚 Configuration and API Reference
### Configuration
SimWorld uses a YAML configuration file to control **global simulator settings** (e.g., `seed`, `dt`, UE blueprint paths) and **module behaviors** (e.g., city generation, traffic simulation, asset retrieval, and agent/LLM options).
For a comprehensive reference of all configuration parameters, see the [Configuration Reference](https://simworld.readthedocs.io/en/latest/getting_started/configuration.html) documentation.
We provide two configuration files to help you get started:
- [simworld/config/default.yaml](simworld/config/default.yaml) contains the **built-in defaults** shipped with the package (reference/fallback). We recommend **not editing** this file.
- [config/example.yaml](config/example.yaml) is a **user template** with placeholders for local paths. Copy it to create your own config.
If you want to customize SimWorld for your own setup, follow the steps below to create and load your own config:
1. Create a custom config from the template:
```bash
cp config/example.yaml config/your_config.yaml
```
2. Modify the configuration values in `your_config.yaml` according to your needs.
3. Load your custom configuration in your code:
```python
from simworld.config import Config
config = Config('path/to/your_config') # use absolute path here
```
### API and Usage
#### Agent Action Space
SimWorld provides a comprehensive action space for pedestrians, vehicles, and robots (e.g., move forward, sit down, pick up). For more details, see [actions](https://simworld.readthedocs.io/en/latest/components/agent_system.html#action-space) and [examples/ue_command.ipynb](examples/ue_command.ipynb).
#### Using UE Cameras and Sensors
SimWorld supports a variety of sensors, including RGB images, segmentation maps, and depth images. For more details, please refer to the [sensors](https://simworld.readthedocs.io/en/latest/components/ue_detail.html#sensors) and the example script [examples/camera.ipynb](examples/camera.ipynb).
#### Commonly Used APIs
All APIs are located in [simworld/communicator](simworld/communicator). Some of the most commonly used ones are listed below:
- [communicator.get_camera_observation](simworld/communicator/communicator.py#L195) (Get camera images: RGB, depth, or segmentation mask)
- [communicator.spawn_object](simworld/communicator/communicator.py#L574) (Spawn objects in the environment at specified position)
- [communicator.spawn_agent](simworld/communicator/communicator.py#L603) (Spawn agents like humanoids or robots in the environment)
- [communicator.generate_world](simworld/communicator/communicator.py#L812) (Generate procedural city world from configuration)
- [communicator.clear_env](simworld/communicator/communicator.py#L880) (Clear all objects from the environment)
<a id="make-your-simworld"></a>
## 🛠️ Make Your SimWorld
Bring your own Unreal Engine environments, assets, and agent models into SimWorld. This lets you add new maps, objects, and characters beyond the built-in library. For example, you can turn almost any idea into a playable world, such as a rainy campus, a night market, or a sci-fi city, and then drop agents into it to explore, interact, and learn. To import your content into SimWorld, package it as a custom `.pak` file. See full instructions in [Make Your Own Pak Files](https://simworld.readthedocs.io/en/latest/customization/make_your_own_pak.html).
## 🔮 Next Steps
The SimWorld framework is under active development. Future releases will include:
- [x] **Plugin System**: Support for importing user-defined custom environments and agents to extend SimWorld's capabilities.
- [ ] **Comprehensive Agent Framework**: A unified training and evaluation pipeline for autonomous agents.
- [ ] **Code Generation for Scenes**: AI-powered coding agents capable of generating diverse simulation scenarios programmatically.
- [ ] **Interactive Layout Editor**: Web-based interface for real-time city layout visualization and editing.
## 🤝 Contributing
We welcome contributions from the community! Whether you want to report bugs, suggest features, or submit code improvements, your input is valuable. Please check out our [Contributing Guidelines](CONTRIBUTING.md) for details on how to get started.
## ⭐ Star History
[](https://www.star-history.com/#SimWorld-AI/SimWorld&type=date&legend=bottom-right)
|