Upload 2 files
Browse files
download_datasets_in_wav_or_mp3_and_create_csv.ipynb
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from datasets import load_dataset\n",
|
| 10 |
+
"import soundfile as sf, os, pandas as pd, re\n",
|
| 11 |
+
"from tqdm import tqdm\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"dataset = load_dataset(\"mozilla-foundation/common_voice_17_0\", \"ja\", split=\"other\", trust_remote_code=True, streaming=True, token=\"\")\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"name = \"other\"\n",
|
| 16 |
+
"ouput_dir = \"./datasets/CV17/\"\n",
|
| 17 |
+
"output_file = 'metadata.csv'\n",
|
| 18 |
+
"os.makedirs(ouput_dir + name, exist_ok=True)\n",
|
| 19 |
+
"folder_path = ouput_dir + name # Create a folder to store the audio and transcription files\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"char = '[ 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890]'\n",
|
| 22 |
+
"special_characters = '[♬「」?!“%‘”~♪…?!゛#$%&()*+:;〈=〉@^_{|}~\"█♩♫』『.;:<>_()*&^$#@`, ]'\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"dsa = (dataset\n",
|
| 25 |
+
" .filter(lambda sample: bool(sample[\"sentence\"]))\n",
|
| 26 |
+
" .filter(lambda sample: not re.search(char, sample[\"sentence\"]))\n",
|
| 27 |
+
" .filter(lambda sample: sample[\"down_votes\"] == 0)\n",
|
| 28 |
+
" )\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"for i, sample in tqdm(enumerate(dsa)): # Process each sample in the filtered dataset\n",
|
| 31 |
+
" audio_sample = name + f'_{i}.wav' # or wav\n",
|
| 32 |
+
" audio_path = os.path.join(folder_path, audio_sample)\n",
|
| 33 |
+
" transcription_path = os.path.join(folder_path, output_file) # Path to save transcription file \n",
|
| 34 |
+
" if not os.path.exists(audio_path):\n",
|
| 35 |
+
" sf.write(audio_path, sample['audio']['array'], sample['audio']['sampling_rate'])\n",
|
| 36 |
+
" sample[\"audio_length\"] = len(sample[\"audio\"][\"array\"]) / sample[\"audio\"][\"sampling_rate\"] # Get audio length, remove if not needed\n",
|
| 37 |
+
" with open(transcription_path, 'a', encoding='utf-8') as transcription_file: # Save transcription file \n",
|
| 38 |
+
" transcription_file.write(audio_sample+\",\") # Save transcription file name \n",
|
| 39 |
+
" sample[\"sentence\"] = re.sub(special_characters,'', sample[\"sentence\"])\n",
|
| 40 |
+
" transcription_file.write(sample['sentence']) # Save transcription \n",
|
| 41 |
+
" transcription_file.write(str(\",\"+str(sample['audio_length']))) # Save audio length, remove if not needed\n",
|
| 42 |
+
" transcription_file.write('\\n') "
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
],
|
| 46 |
+
"metadata": {
|
| 47 |
+
"kernelspec": {
|
| 48 |
+
"display_name": "Python 3",
|
| 49 |
+
"language": "python",
|
| 50 |
+
"name": "python3"
|
| 51 |
+
},
|
| 52 |
+
"language_info": {
|
| 53 |
+
"codemirror_mode": {
|
| 54 |
+
"name": "ipython",
|
| 55 |
+
"version": 3
|
| 56 |
+
},
|
| 57 |
+
"file_extension": ".py",
|
| 58 |
+
"mimetype": "text/x-python",
|
| 59 |
+
"name": "python",
|
| 60 |
+
"nbconvert_exporter": "python",
|
| 61 |
+
"pygments_lexer": "ipython3",
|
| 62 |
+
"version": "3.10.0"
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"nbformat": 4,
|
| 66 |
+
"nbformat_minor": 2
|
| 67 |
+
}
|
extract_audio_sentences_from_mp4_line_by_line_and_create_csv.ipynb
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import os, io, re, sys, time, datetime, wave, contextlib, librosa\n",
|
| 11 |
+
"from glob import glob\n",
|
| 12 |
+
"import numpy as np\n",
|
| 13 |
+
"from moviepy.editor import *\n",
|
| 14 |
+
"import soundfile as sf\n",
|
| 15 |
+
"from pydub import AudioSegment\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"def create_directories():\n",
|
| 18 |
+
" slice_path = './ready_for_slice'\n",
|
| 19 |
+
" if not os.path.exists(slice_path):\n",
|
| 20 |
+
" try:\n",
|
| 21 |
+
" os.mkdir(slice_path)\n",
|
| 22 |
+
" except OSError:\n",
|
| 23 |
+
" print('Creation of directory %s failed' %slice_path)\n",
|
| 24 |
+
" sliced_audio = './sliced_audio'\n",
|
| 25 |
+
" if not os.path.exists(sliced_audio):\n",
|
| 26 |
+
" try:\n",
|
| 27 |
+
" os.mkdir(sliced_audio)\n",
|
| 28 |
+
" except OSError:\n",
|
| 29 |
+
" print('Creation of directory %s failed' %sliced_audio)\n",
|
| 30 |
+
"\n",
|
| 31 |
+
" merged_csv_files = './merged_csv'\n",
|
| 32 |
+
" if not os.path.exists(merged_csv_files):\n",
|
| 33 |
+
" try:\n",
|
| 34 |
+
" os.mkdir(merged_csv_files)\n",
|
| 35 |
+
" except OSError:\n",
|
| 36 |
+
" print('Creation of directory %s failed' %merged_csv_files)\n",
|
| 37 |
+
"\n",
|
| 38 |
+
" final_csv_files = './final_csv'\n",
|
| 39 |
+
" if not os.path.exists(final_csv_files):\n",
|
| 40 |
+
" try:\n",
|
| 41 |
+
" os.mkdir(final_csv_files)\n",
|
| 42 |
+
" except OSError:\n",
|
| 43 |
+
" print('Creation of directory %s failed' %final_csv_files)\n",
|
| 44 |
+
" \n",
|
| 45 |
+
" audio = './audio'\n",
|
| 46 |
+
" if not os.path.exists(audio):\n",
|
| 47 |
+
" try:\n",
|
| 48 |
+
" os.mkdir(audio)\n",
|
| 49 |
+
" except OSError:\n",
|
| 50 |
+
" print('Creation of directory %s failed' %audio)\n",
|
| 51 |
+
" \n",
|
| 52 |
+
" srt_files = './srt_files'\n",
|
| 53 |
+
" if not os.path.exists(srt_files):\n",
|
| 54 |
+
" try:\n",
|
| 55 |
+
" os.mkdir(srt_files)\n",
|
| 56 |
+
" except OSError:\n",
|
| 57 |
+
" print('Creation of directory %s failed' %srt_files)\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"def merge_csv(path):\n",
|
| 60 |
+
" print('Merging csv-files with transcriptions')\n",
|
| 61 |
+
" csv_combined = pd.DataFrame()\n",
|
| 62 |
+
" for entry in glob (path+'*.csv'):\n",
|
| 63 |
+
" df = pd.read_csv(entry)\n",
|
| 64 |
+
" csv_combined = csv_combined.append(df)\n",
|
| 65 |
+
"\n",
|
| 66 |
+
" csv_combined.to_csv('./merged_csv/Full_Transcript.csv', header=True, index=False, encoding='utf-8')\n",
|
| 67 |
+
" print('All csv-files merged')\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"def change_encoding(srt):\n",
|
| 70 |
+
" with io.open(srt, 'r', encoding='utf-8') as f:\n",
|
| 71 |
+
" text = f.read()\n",
|
| 72 |
+
" # process Unicode text\n",
|
| 73 |
+
" with io.open(srt, 'w', encoding='utf-8') as f:\n",
|
| 74 |
+
" f.write(text)\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"def convert_srt_to_csv(file):\n",
|
| 77 |
+
" with open(file, 'r', encoding='utf-8') as h:\n",
|
| 78 |
+
" sub = h.readlines() #returns list of all lines\n",
|
| 79 |
+
"\n",
|
| 80 |
+
" re_pattern = r'[0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3} --> [0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}'\n",
|
| 81 |
+
" regex = re.compile(re_pattern)\n",
|
| 82 |
+
" # Get start times\n",
|
| 83 |
+
" times = list(filter(regex.search, sub))\n",
|
| 84 |
+
" end_times = [time.split('--> ')[1] for time in times] #returns a list\n",
|
| 85 |
+
" start_times = [time.split(' ')[0] for time in times] #returns a list\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" # Get lines\n",
|
| 88 |
+
" lines = [[]]\n",
|
| 89 |
+
" for sentence in sub:\n",
|
| 90 |
+
" if re.match(re_pattern, sentence):\n",
|
| 91 |
+
" lines[-1].pop()\n",
|
| 92 |
+
" lines.append([])\n",
|
| 93 |
+
" else:\n",
|
| 94 |
+
" lines[-1].append(sentence)\n",
|
| 95 |
+
"\n",
|
| 96 |
+
" lines = lines[1:] #all text in lists\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" column_names = ['id','start_times', 'end_times', 'sentence']\n",
|
| 99 |
+
" df_text = pd.DataFrame(columns=column_names)\n",
|
| 100 |
+
"\n",
|
| 101 |
+
" df_text['start_times'] = start_times\n",
|
| 102 |
+
" df_text['end_times'] = end_times\n",
|
| 103 |
+
" df_text['sentence'] = [\" \".join(i).replace('\\n', '') for i in lines]\n",
|
| 104 |
+
" df_text['end_times'] = df_text['end_times'].replace(r'\\n', '', regex=True)\n",
|
| 105 |
+
"\n",
|
| 106 |
+
" df_text['id'] = np.arange(len(df_text))\n",
|
| 107 |
+
" id_extension = os.path.basename(file).replace('.srt', '_')\n",
|
| 108 |
+
" id_extension = id_extension.replace(' ', '_')\n",
|
| 109 |
+
" id_extension = id_extension.replace('-', '_')\n",
|
| 110 |
+
" id_extension = id_extension.replace('.', '_')\n",
|
| 111 |
+
" id_extension = id_extension.replace('__', '_')\n",
|
| 112 |
+
" id_extension = id_extension.replace('___', '_')\n",
|
| 113 |
+
" df_text['id'] = id_extension + df_text['id'].map(str)\n",
|
| 114 |
+
" file_extension = id_extension[:-1]\n",
|
| 115 |
+
"\n",
|
| 116 |
+
" def convert_to_ms(time):\n",
|
| 117 |
+
" h_ms = int(time[:2])*3600000\n",
|
| 118 |
+
" m_ms = int(time[3:5])*60000\n",
|
| 119 |
+
" s_ms = int(time[6:8])*1000\n",
|
| 120 |
+
" ms = int(time[9:12])\n",
|
| 121 |
+
" ms_total = h_ms + m_ms + s_ms + ms\n",
|
| 122 |
+
" return(ms_total)\n",
|
| 123 |
+
"\n",
|
| 124 |
+
" def conv_int(start):\n",
|
| 125 |
+
" new_start = int(start)\n",
|
| 126 |
+
" return(new_start)\n",
|
| 127 |
+
"\n",
|
| 128 |
+
" df_text['start_times'] = df_text['start_times'].apply(convert_to_ms)\n",
|
| 129 |
+
" df_text['end_times'] = df_text['end_times'].apply(convert_to_ms)\n",
|
| 130 |
+
" df_text['start_times'] = df_text['start_times'].apply(conv_int)\n",
|
| 131 |
+
" df_text.to_csv('./ready_for_slice/' + file_extension + '.csv', index=False, header=True, encoding='utf-8-sig')\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"def wmv_to_wav(entry):\n",
|
| 134 |
+
" video = VideoFileClip(entry)\n",
|
| 135 |
+
" audio = video.audio\n",
|
| 136 |
+
" filename = os.path.basename(entry)\n",
|
| 137 |
+
" filename = filename.replace(' ', '_')\n",
|
| 138 |
+
" filename = filename.replace('-', '_')\n",
|
| 139 |
+
" filename = filename.replace('.', '_')\n",
|
| 140 |
+
" filename = filename.replace('__', '_')\n",
|
| 141 |
+
" filename = filename.replace('___', '_')\n",
|
| 142 |
+
" filename = filename[:-4] + '.wav'\n",
|
| 143 |
+
" audio.write_audiofile('./audio/' +filename)\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"def mp4_to_wav(entry):\n",
|
| 146 |
+
" video = VideoFileClip(entry)\n",
|
| 147 |
+
" #extract audio from video\n",
|
| 148 |
+
" audio = video.audio\n",
|
| 149 |
+
" filename = os.path.basename(entry)\n",
|
| 150 |
+
" filename = filename.replace(' ', '_')\n",
|
| 151 |
+
" filename = filename.replace('-', '_')\n",
|
| 152 |
+
" filename = filename.replace('.', '_')\n",
|
| 153 |
+
" filename = filename.replace('__', '_')\n",
|
| 154 |
+
" filename = filename.replace('___', '_')\n",
|
| 155 |
+
" filename = filename[:-4] + '.wav'\n",
|
| 156 |
+
" #filename = filename[:-4]+'.wav'\n",
|
| 157 |
+
" #filename = filename[:10] + '_' + filename[-9:]\n",
|
| 158 |
+
" audio.write_audiofile('./audio/' +filename)\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"def pre_process_audio(audio_path):\n",
|
| 161 |
+
" path_audio_processed = './ready_for_slice/'\n",
|
| 162 |
+
" if not os.path.exists(path_audio_processed):\n",
|
| 163 |
+
" try:\n",
|
| 164 |
+
" os.mkdir(path_audio_processed)\n",
|
| 165 |
+
" except OSError:\n",
|
| 166 |
+
" print('Creation of directory %s failed' %path_audio_processed)\n",
|
| 167 |
+
" else:\n",
|
| 168 |
+
" print('Successfully created the directory %s' %path_audio_processed)\n",
|
| 169 |
+
" start_sub = time.time()\n",
|
| 170 |
+
" n = 0\n",
|
| 171 |
+
" print('Downsampling wav files...')\n",
|
| 172 |
+
" for file in os.listdir(audio_path):\n",
|
| 173 |
+
" if(file.endswith('.wav')):\n",
|
| 174 |
+
" try:\n",
|
| 175 |
+
" nameSolo_1 = file.rsplit('.', 1)[0]\n",
|
| 176 |
+
" y, s = librosa.load(audio_path + file, sr=16000) # Downsample 44.1kHz to 8kHz\n",
|
| 177 |
+
" sf.write(path_audio_processed + nameSolo_1 + '.wav', y, s)\n",
|
| 178 |
+
" n = n+1\n",
|
| 179 |
+
" print('File ', n , ' completed:', nameSolo_1)\n",
|
| 180 |
+
" except EOFError as error:\n",
|
| 181 |
+
" next\n",
|
| 182 |
+
"\n",
|
| 183 |
+
" s = 0\n",
|
| 184 |
+
" print('Changing bit pro sample...')\n",
|
| 185 |
+
" for file in os.listdir(path_audio_processed):\n",
|
| 186 |
+
" if(file.endswith('.wav')):\n",
|
| 187 |
+
" try:\n",
|
| 188 |
+
" nameSolo_2 = file.rsplit('.', 1)[0]\n",
|
| 189 |
+
" #nameSolo_2 = nameSolo_2.replace('')\n",
|
| 190 |
+
" data, samplerate = sf.read(path_audio_processed + file)\n",
|
| 191 |
+
" sf.write(path_audio_processed + nameSolo_2 + '.wav', data, samplerate, subtype='PCM_16')\n",
|
| 192 |
+
" s = s + 1\n",
|
| 193 |
+
" print('File ' , s , ' completed')\n",
|
| 194 |
+
" except EOFError as error:\n",
|
| 195 |
+
" next\n",
|
| 196 |
+
"\n",
|
| 197 |
+
" end_sub = time.time()\n",
|
| 198 |
+
" print('The script took ', end_sub-start_sub, ' seconds to run')\n",
|
| 199 |
+
" \n",
|
| 200 |
+
"def create_DS_csv (path):\n",
|
| 201 |
+
" print('Extracting filepath and -size for every .wav file in ./sliced_audio')\n",
|
| 202 |
+
" data = pd.DataFrame(columns=['file_name', 'duration'])\n",
|
| 203 |
+
" df = pd.DataFrame(columns=['file_name', 'duration'])\n",
|
| 204 |
+
"\n",
|
| 205 |
+
" for entry in glob(path +'*.wav'):\n",
|
| 206 |
+
" filename = os.path.basename(entry)\n",
|
| 207 |
+
" with contextlib.closing(wave.open(entry, 'rb')) as f:\n",
|
| 208 |
+
" frames = f.getnframes()\n",
|
| 209 |
+
" rate = f.getframerate()\n",
|
| 210 |
+
" duration = frames / float(rate)\n",
|
| 211 |
+
" df['file_name'] = [filename]\n",
|
| 212 |
+
" df['duration'] = [duration]\n",
|
| 213 |
+
" data = data.append(df)\n",
|
| 214 |
+
" data.to_csv('./merged_csv/Filepath_Filesize.csv', header=True, index=False, encoding='utf-8')\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"def split_files(item, wav_item):\n",
|
| 217 |
+
" song = AudioSegment.from_wav(wav_item)\n",
|
| 218 |
+
" df = pd.read_csv(item)\n",
|
| 219 |
+
"\n",
|
| 220 |
+
" def audio_split(df):\n",
|
| 221 |
+
" split = song[df['start_times']:df['end_times']]\n",
|
| 222 |
+
" split.export('./sliced_audio/' + df['id'] + '.wav', format ='wav')\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" df.apply(audio_split, axis=1)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"def merge_transcripts_and_wav_files(transcript_path, DS_csv):\n",
|
| 227 |
+
" df_final = pd.DataFrame()\n",
|
| 228 |
+
" df_transcripts = pd.read_csv(transcript_path)\n",
|
| 229 |
+
" df_files = pd.read_csv(DS_csv)\n",
|
| 230 |
+
" def remove_path(path):\n",
|
| 231 |
+
" path = path.split('/')[-1]\n",
|
| 232 |
+
" return path\n",
|
| 233 |
+
" df_files['id'] = df_files['file_name'].apply(remove_path)\n",
|
| 234 |
+
" #filter out duration of less than 10 seconds\n",
|
| 235 |
+
" def convert(duration):\n",
|
| 236 |
+
" time = float(duration)\n",
|
| 237 |
+
" return time\n",
|
| 238 |
+
" df_files['duration'] = df_files['duration'].apply(convert)\n",
|
| 239 |
+
" df_files = df_files[df_files['duration']<10.00]\n",
|
| 240 |
+
" #drop unnecessary columns\n",
|
| 241 |
+
" df_transcripts.drop(['start_times','end_times'], axis=1, inplace=True)\n",
|
| 242 |
+
" df_files.drop(['duration'], axis=1, inplace=True)\n",
|
| 243 |
+
" df_files['id'] = df_files['id'].replace('.wav', '', regex=True)\n",
|
| 244 |
+
" #merge on column id\n",
|
| 245 |
+
" df_final = pd.merge(df_transcripts, df_files, on='id')\n",
|
| 246 |
+
" df_final.drop(['id'], axis=1, inplace=True)\n",
|
| 247 |
+
" #rearrange columns\n",
|
| 248 |
+
" df_final = df_final[['file_name', 'sentence']]\n",
|
| 249 |
+
" df_final.to_csv('./final_csv/metadata.csv', header=True, index=False, encoding='utf-8')\n",
|
| 250 |
+
" \n",
|
| 251 |
+
" create_directories()\n",
|
| 252 |
+
" \n",
|
| 253 |
+
"print(\"Put your video or audio files into the audio folder and srt files into the srt_files folder when you're ready...\")"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": null,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [],
|
| 261 |
+
"source": [
|
| 262 |
+
"start_time = time.time()\n",
|
| 263 |
+
"srt_path = './srt_files'\n",
|
| 264 |
+
"audio_path = './audio/'\n",
|
| 265 |
+
"srt_counter = len(glob('./srt_files/' + '*.srt'))\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"#Extracting information from srt-files to csv\n",
|
| 268 |
+
"print('Extracting information from srt_file(s) to csv_files')\n",
|
| 269 |
+
"for file in glob('./srt_files/*.srt'):\n",
|
| 270 |
+
" convert_srt_to_csv(file)\n",
|
| 271 |
+
"print('%s-file(s) converted and saved as csv-files to ./csv' %srt_counter)\n",
|
| 272 |
+
"print('---------------------------------------------------------------------')\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"#extract audio (wav) from mp4\n",
|
| 275 |
+
"for entry in glob('./audio/*.mp4'):\n",
|
| 276 |
+
" mp4_to_wav(entry)\n",
|
| 277 |
+
"print('MP4 to WAV convert complete')\n",
|
| 278 |
+
"print('---------------------------------------------------------------------')\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"#Pre-process audio for folder in which wav files are stored\n",
|
| 282 |
+
"pre_process_audio(audio_path)\n",
|
| 283 |
+
"print('Pre-processing of audio files is complete.')\n",
|
| 284 |
+
"print('---------------------------------------------------------------------')\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"print('Slicing audio according to start- and end_times of transcript_csvs...')\n",
|
| 287 |
+
"for item in glob('./ready_for_slice/*.csv'):\n",
|
| 288 |
+
" wav_item = item.replace('.csv','.wav')\n",
|
| 289 |
+
" if os.path.exists(wav_item):\n",
|
| 290 |
+
" split_files(item, wav_item)\n",
|
| 291 |
+
" else:\n",
|
| 292 |
+
" next\n",
|
| 293 |
+
"wav_counter = len(glob('./sliced_audio/' + '*.wav'))\n",
|
| 294 |
+
"print('Slicing complete. {} files in dir \"sliced_audio\"'.format(wav_counter))\n",
|
| 295 |
+
"print('---------------------------------------------------------------------')\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"create_DS_csv('./sliced_audio/')\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"#now join all seperate csv files\n",
|
| 300 |
+
"merge_csv('./ready_for_slice/')\n",
|
| 301 |
+
"print('Merged csv with all transcriptions created.')\n",
|
| 302 |
+
"print('---------------------------------------------------------------------')\n",
|
| 303 |
+
"transcript_path = './merged_csv/Full_Transcript.csv'\n",
|
| 304 |
+
"DS_path = './merged_csv/Filepath_Filesize.csv'\n",
|
| 305 |
+
"merge_transcripts_and_wav_files(transcript_path, DS_path)"
|
| 306 |
+
]
|
| 307 |
+
}
|
| 308 |
+
],
|
| 309 |
+
"metadata": {
|
| 310 |
+
"kernelspec": {
|
| 311 |
+
"display_name": "Python 3",
|
| 312 |
+
"language": "python",
|
| 313 |
+
"name": "python3"
|
| 314 |
+
},
|
| 315 |
+
"language_info": {
|
| 316 |
+
"codemirror_mode": {
|
| 317 |
+
"name": "ipython",
|
| 318 |
+
"version": 3
|
| 319 |
+
},
|
| 320 |
+
"file_extension": ".py",
|
| 321 |
+
"mimetype": "text/x-python",
|
| 322 |
+
"name": "python",
|
| 323 |
+
"nbconvert_exporter": "python",
|
| 324 |
+
"pygments_lexer": "ipython3",
|
| 325 |
+
"version": "3.10.0"
|
| 326 |
+
}
|
| 327 |
+
},
|
| 328 |
+
"nbformat": 4,
|
| 329 |
+
"nbformat_minor": 2
|
| 330 |
+
}
|