File size: 4,977 Bytes
e051419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from functools import partial
import numpy as np

length_bucket_options = {
    1: [321, 301, 281, 261, 241, 221, 193, 181, 161, 141, 121, 101, 81, 61, 41, 21],
    2: [193, 177, 161, 156, 145, 133, 129, 121, 113, 109, 97, 85, 81, 73, 65, 61, 49, 37, 25],
}

def find_nearest_length_bucket(length, stride=1):
    buckets = length_bucket_options[stride]
    min_bucket = min(buckets)
    if length < min_bucket:
        return length
    valid_buckets = [bucket for bucket in buckets if bucket <= length]
    return max(valid_buckets)

def split_long_videos(df, stride=1, skip_frames=0, skip_end_frames=0, overlap=0):
    """
    将长视频分割成多个段,充分利用所有帧
    
    Args:
        df: 输入DataFrame
        stride: bucket选择的stride参数
        skip_frames: 跳过开头的帧数
        skip_end_frames: 跳过结尾的帧数
        overlap: 段之间的重叠帧数,默认为0
    """
    result_rows = []
    max_bucket = max(length_bucket_options[stride])
    
    for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing videos"):
        if pd.isna(row.get('new_num_frame')):
            print(f"Skipping row {idx}: new_num_frame is NaN or missing")
            continue

        num_frames = row['new_num_frame']
        # 计算可用帧数(去除开头和结尾)
        available_frames = num_frames - skip_frames - skip_end_frames
        
        # 如果可用帧数太少,跳过这个视频
        if available_frames < min(length_bucket_options[stride]):
            continue
        
        if available_frames <= max_bucket:
            # 短视频,直接处理
            new_row = row.copy()
            new_row['start_frame'] = skip_frames
            bucket_length = find_nearest_length_bucket(available_frames, stride)
            new_row['end_frame'] = skip_frames + bucket_length
            new_row['segment_id'] = 0
            result_rows.append(new_row)
        else:
            # 长视频,分割成多个段
            step_size = max_bucket - overlap
            segment_count = 0
            
            start_pos = skip_frames
            effective_end = num_frames - skip_end_frames  # 有效结束位置
            
            while start_pos < effective_end:
                remaining_frames = effective_end - start_pos
                
                # 如果剩余帧数小于最小bucket,跳过
                if remaining_frames < min(length_bucket_options[stride]):
                    break
                
                new_row = row.copy()
                new_row['start_frame'] = start_pos
                
                # 计算这个段的长度
                segment_length = min(remaining_frames, max_bucket)
                bucket_length = find_nearest_length_bucket(segment_length, stride)
                new_row['end_frame'] = start_pos + bucket_length
                new_row['segment_id'] = segment_count
                
                result_rows.append(new_row)
                
                # 移动到下一个段的起始位置
                start_pos += step_size
                segment_count += 1
                
                # 如果剩余帧数不足以形成新段,退出
                if start_pos + min(length_bucket_options[stride]) > effective_end:
                    break
    
    return pd.DataFrame(result_rows)

def add_frame_range_with_segments(csv_path, output_path=None, stride=1, skip_frames=0, skip_end_frames=0, overlap=0):
    """
    为CSV添加start_frame和end_frame列,并将长视频分割成多个段
    
    Args:
        csv_path: 输入CSV文件路径
        output_path: 输出CSV文件路径,如果为None则覆盖原文件
        stride: bucket选择的stride参数
        skip_frames: 跳过开头的帧数,默认为0
        skip_end_frames: 跳过结尾的帧数,默认为0
        overlap: 段之间的重叠帧数,默认为0
    """
    # 读取CSV
    df = pd.read_csv(csv_path)
    
    # 分割长视频并添加帧范围
    result_df = split_long_videos(df, stride, skip_frames, skip_end_frames, overlap)
    
    # 保存结果
    if output_path is None:
        output_path = csv_path
    result_df.to_csv(output_path, index=False)
    
    return result_df

# 使用示例
if __name__ == "__main__":
    input_csv = '/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step0.csv'
    output_csv = '/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step1.csv'
    df = add_frame_range_with_segments(input_csv, output_csv, stride=1, skip_frames=11, skip_end_frames=19, overlap=0)
    
    # 打印结果统计
    print(f"处理后行数: {len(df)}")
    print(f"分段统计:")
    print(df['segment_id'].value_counts().sort_index())
    print("\n前几行示例:")
    print(df.head(10))