File size: 11,891 Bytes
b4feb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import os
from tqdm import tqdm
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    LlamaModel,
    LlamaTokenizerFast,
    SiglipImageProcessor,
    SiglipVisionModel,
)
from diffusers.video_processor import VideoProcessor
from diffusers.utils import export_to_video, load_image

from dummy_dataloader_official import BucketedFeatureDataset, BucketedSampler, collate_fn
from torch.utils.data import DataLoader

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import Subset
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from IPython.display import HTML, display
from IPython.display import clear_output

from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from diffusers.training_utils import free_memory

from accelerate import Accelerator
from utils_framepack import encode_image, encode_prompt

def setup_distributed_env():
    dist.init_process_group(backend="nccl")
    torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))

def cleanup_distributed_env():
    dist.destroy_process_group()

def main(rank, world_size, global_rank, stride, batch_size, dataloader_num_workers, csv_file, video_folder, output_latent_folder, pretrained_model_name_or_path, siglip_model_name_or_path):
    weight_dtype = torch.bfloat16
    device = rank
    seed = 42

    # Load the tokenizers
    tokenizer_one = LlamaTokenizerFast.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="tokenizer",
    )
    tokenizer_two = CLIPTokenizer.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="tokenizer_2",
    )
    feature_extractor = SiglipImageProcessor.from_pretrained(
        siglip_model_name_or_path,
        subfolder="feature_extractor",

    )

    vae = AutoencoderKLHunyuanVideo.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="vae",
        torch_dtype=torch.float32,
    )
    vae_scale_factor_spatial = vae.spatial_compression_ratio
    video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial)

    text_encoder_one = LlamaModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        torch_dtype=weight_dtype,
    )
    text_encoder_two = CLIPTextModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder_2",
        torch_dtype=weight_dtype,
    )
    image_encoder = SiglipVisionModel.from_pretrained(
        siglip_model_name_or_path,
        subfolder="image_encoder",
        torch_dtype=weight_dtype,
    )

    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)
    image_encoder.requires_grad_(False)
    vae.eval()
    text_encoder_one.eval()
    text_encoder_two.eval()
    image_encoder.eval()

    vae = vae.to(device)
    text_encoder_one = text_encoder_one.to(device)
    text_encoder_two = text_encoder_two.to(device)
    image_encoder = image_encoder.to(device)

    # dist.barrier()
    dataset = BucketedFeatureDataset(csv_file=csv_file, video_folder=video_folder, stride=stride, force_rebuild=True)
    sampler = BucketedSampler(dataset, batch_size=batch_size, drop_last=True, shuffle=True, seed=seed)
    dataloader = DataLoader(
        dataset, 
        batch_sampler=sampler, 
        collate_fn=collate_fn, 
        num_workers=dataloader_num_workers,
        # pin_memory=True,
        prefetch_factor=2 if dataloader_num_workers != 0 else None,
        # persistent_workers=True if dataloader_num_workers > 0 else False,
    )

    print(len(dataset), len(dataloader))
    accelerator = Accelerator()
    dataloader = accelerator.prepare(dataloader)
    print(f"Dataset size: {len(dataset)}, Dataloader batches: {len(dataloader)}")
    print(f"Process index: {accelerator.process_index}, World size: {accelerator.num_processes}")

    sampler.set_epoch(0)
    if rank==0:
        pbar = tqdm(total=len(dataloader), desc="Processing")
    # dist.barrier()
    for idx, batch in enumerate(dataloader):
        free_memory()

        valid_indices = []
        valid_uttids = []
        valid_num_frames = []
        valid_heights = []
        valid_widths = []
        valid_videos = []
        valid_prompts = []
        valid_first_frames_images = []

        for i, (uttid, num_frame, height, width) in enumerate(zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"])):
            os.makedirs(output_latent_folder, exist_ok=True)
            output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt")
            if not os.path.exists(output_path):
                valid_indices.append(i)
                valid_uttids.append(uttid)
                valid_num_frames.append(num_frame)
                valid_heights.append(height)
                valid_widths.append(width)
                valid_videos.append(batch["videos"][i])
                valid_prompts.append(batch["prompts"][i])
                valid_first_frames_images.append(batch["first_frames_images"][i])
            else:
                print(f"skipping {uttid}")
        
        if not valid_indices:
            print("skipping entire batch!")
            if rank==0:
                pbar.update(1)
                pbar.set_postfix({"batch": idx})
            continue
        
        batch = None
        del batch
        free_memory()

        batch = {
            "uttid": valid_uttids,
            "video_metadata": {
                "num_frames": valid_num_frames,
                "height": valid_heights,
                "width": valid_widths
            },
            "videos": torch.stack(valid_videos),
            "prompts": valid_prompts,
            "first_frames_images": torch.stack(valid_first_frames_images),
        }
        
        if len(batch["uttid"]) == 0:
            print("All samples in this batch are already processed, skipping!")
            continue

        with torch.no_grad():
            # Get Vae feature 1
            pixel_values = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=vae.dtype, device=device)
            vae_latents = vae.encode(pixel_values).latent_dist.sample()
            vae_latents = vae_latents * vae.config.scaling_factor

            # Encode prompts
            prompts = batch["prompts"]
            prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = encode_prompt(
                tokenizer=tokenizer_one,
                text_encoder=text_encoder_one,
                tokenizer_2=tokenizer_two,
                text_encoder_2=text_encoder_two,
                prompt=prompts,
                device=device,
            )

            # Prepare images
            image_tensor = batch["first_frames_images"]
            images = [transforms.ToPILImage()(x.to(torch.uint8)) for x in image_tensor]
            image = video_processor.preprocess(image=images, height=batch["videos"].shape[-2], width=batch["videos"].shape[-1])
            image_embeds = encode_image(
                feature_extractor,
                image_encoder,
                image,
                device=device,
                dtype=weight_dtype,
            )

        for uttid, num_frame, height, width, cur_vae_latent, cur_prompt_embed, cur_pooled_prompt_embed, cur_prompt_attention_mask, cur_image_embed in zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"], vae_latents, prompt_embeds, pooled_prompt_embeds, prompt_attention_mask, image_embeds):
            output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt")
            temp_to_save = {
                    "vae_latent": cur_vae_latent.cpu().detach(),
                    "prompt_embed": cur_prompt_embed.cpu().detach(),
                    "pooled_prompt_embeds": cur_pooled_prompt_embed.cpu().detach(),
                    "prompt_attention_mask": cur_prompt_attention_mask.cpu().detach(),
                    "image_embeds": cur_image_embed.cpu().detach(),
                }
            torch.save(
                temp_to_save,
                output_path
            )
            print(f"save latent to: {output_path}")
        
        if rank==0:
            pbar.update(1)
            pbar.set_postfix({"batch": idx})


        pixel_values = None
        prompts = None
        image_tensor = None
        images = None
        vae_latents = None
        vae_latents_2 = None
        image_embeds = None
        prompt_embeds = None
        pooled_prompt_embeds = None
        prompt_attention_mask = None
        batch = None
        valid_indices = None
        valid_uttids = None
        valid_num_frames = None
        valid_heights = None
        valid_widths = None
        valid_videos = None
        valid_prompts = None
        valid_first_frames_images = None
        temp_to_save = None

        del pixel_values
        del prompts
        del image_tensor
        del images
        del vae_latents
        del vae_latents_2
        del image_embeds
        del batch
        del valid_indices
        del valid_uttids
        del valid_num_frames
        del valid_heights
        del valid_widths
        del valid_videos
        del valid_prompts
        del valid_first_frames_images
        del temp_to_save

        free_memory()
        # dist.barrier()
    # dist.barrier()
    dist.destroy_process_group()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Script for running model training and data processing.")
    parser.add_argument("--stride", type=int, default=2, help="Batch size for processing")
    parser.add_argument("--batch_size", type=int, default=1, help="Batch size for processing")
    parser.add_argument("--dataloader_num_workers", type=int, default=0, help="Number of workers for data loading")
    parser.add_argument("--csv_file", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/train/sekai-game-drone_updated.csv", help="Path to the config file")
    parser.add_argument("--video_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/sekai-game-drone", help="Path to the config file")
    parser.add_argument("--output_latent_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/sekai-game-drone/latents", help="Folder to store output latents")
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo", help="Pretrained model path")
    parser.add_argument("--siglip_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl", help="Siglip model path")
    args = parser.parse_args()


    setup_distributed_env()

    global_rank = dist.get_rank()
    local_rank = int(os.environ["LOCAL_RANK"])
    device = torch.cuda.current_device()
    world_size = dist.get_world_size()

    main(
        rank=device,
        world_size=world_size,
        global_rank=global_rank,
        stride=args.stride,
        batch_size=args.batch_size,
        dataloader_num_workers=args.dataloader_num_workers,
        csv_file=args.csv_file,
        video_folder=args.video_folder,
        output_latent_folder=args.output_latent_folder,
        pretrained_model_name_or_path=args.pretrained_model_name_or_path,
        siglip_model_name_or_path=args.siglip_model_name_or_path,
    )