SuperCS's picture
Add files using upload-large-folder tool
e051419 verified
import pandas as pd
length_bucket_options = {
1: [321, 301, 281, 261, 241, 221, 193, 181, 161, 141, 121, 101, 81, 61, 41, 21],
2: [193, 177, 161, 156, 145, 133, 129, 121, 113, 109, 97, 85, 81, 73, 65, 61, 49, 37, 25],
}
def find_nearest_length_bucket(length, stride=1):
buckets = length_bucket_options[stride]
min_bucket = min(buckets)
if length < min_bucket:
return length
valid_buckets = [bucket for bucket in buckets if bucket <= length]
return max(valid_buckets)
def split_long_videos(df, stride=1, skip_frames=0, overlap=0):
"""
将长视频分割成多个段,充分利用所有帧
Args:
df: 输入DataFrame
stride: bucket选择的stride参数
skip_frames: 跳过开头的帧数
overlap: 段之间的重叠帧数,默认为0
"""
result_rows = []
max_bucket = max(length_bucket_options[stride])
for idx, row in df.iterrows():
num_frames = row['num frames']
if num_frames <= max_bucket:
# 短视频,直接处理
new_row = row.copy()
new_row['start_frame'] = skip_frames
bucket_length = find_nearest_length_bucket(num_frames - skip_frames, stride)
new_row['end_frame'] = skip_frames + bucket_length
new_row['segment_id'] = 0
result_rows.append(new_row)
else:
# 长视频,分割成多个段
available_frames = num_frames - skip_frames
step_size = max_bucket - overlap
segment_count = 0
start_pos = skip_frames
while start_pos < num_frames:
remaining_frames = num_frames - start_pos
# 如果剩余帧数小于最小bucket,跳过
if remaining_frames < min(length_bucket_options[stride]):
break
new_row = row.copy()
new_row['start_frame'] = start_pos
# 计算这个段的长度
segment_length = min(remaining_frames, max_bucket)
bucket_length = find_nearest_length_bucket(segment_length, stride)
new_row['end_frame'] = start_pos + bucket_length
new_row['segment_id'] = segment_count
result_rows.append(new_row)
# 移动到下一个段的起始位置
start_pos += step_size
segment_count += 1
# 如果剩余帧数不足以形成新段,退出
if start_pos + min(length_bucket_options[stride]) > num_frames:
break
return pd.DataFrame(result_rows)
def add_frame_range_with_segments(csv_path, output_path=None, stride=1, skip_frames=0, overlap=0):
"""
为CSV添加start_frame和end_frame列,并将长视频分割成多个段
Args:
csv_path: 输入CSV文件路径
output_path: 输出CSV文件路径,如果为None则覆盖原文件
stride: bucket选择的stride参数
skip_frames: 跳过开头的帧数,默认为0
overlap: 段之间的重叠帧数,默认为0
"""
# 读取CSV
df = pd.read_csv(csv_path)
# 分割长视频并添加帧范围
result_df = split_long_videos(df, stride, skip_frames, overlap)
# 保存结果
if output_path is None:
output_path = csv_path
result_df.to_csv(output_path, index=False)
return result_df
# 使用示例
if __name__ == "__main__":
# 示例1: 基本用法,无重叠
input_csv = '/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ/data/train/SpatialVID_HQ_metadata.csv' # 替换为你的输入文件名
output_csv = 'test.csv'
df = add_frame_range_with_segments(input_csv, output_csv, stride=1, skip_frames=11, overlap=0)
# 示例2: 带重叠,确保段之间的连续性
# df = add_frame_range_with_segments('your_file.csv', 'output.csv', stride=1, skip_frames=0, overlap=20)
# 示例3: 使用stride=2的bucket
# df = add_frame_range_with_segments('your_file.csv', 'output.csv', stride=2, skip_frames=5, overlap=10)
# 打印结果统计
print(f"原始行数可能更少,处理后行数: {len(df)}")
print(f"分段统计:")
print(df['segment_id'].value_counts().sort_index())
print("\n前几行示例:")
print(df.head(10))