SuperCS commited on
Commit
7f2bd75
·
verified ·
1 Parent(s): 2336cc9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora.cpython-312.pyc +0 -0
  2. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora_framepack.cpython-312.pyc +0 -0
  3. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora_wan.cpython-312.pyc +0 -0
  4. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__init__.py +0 -0
  5. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/__init__.cpython-312.pyc +0 -0
  6. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/device_utils.cpython-312.pyc +0 -0
  7. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/huggingface_utils.cpython-312.pyc +0 -0
  8. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/model_utils.cpython-312.pyc +0 -0
  9. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/safetensors_utils.cpython-312.pyc +0 -0
  10. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/sai_model_spec.cpython-312.pyc +0 -0
  11. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/train_utils.cpython-312.pyc +0 -0
  12. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/device_utils.py +19 -0
  13. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/huggingface_utils.py +89 -0
  14. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/model_utils.py +151 -0
  15. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/safetensors_utils.py +221 -0
  16. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/sai_model_spec.py +286 -0
  17. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/train_utils.py +178 -0
  18. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/__init__.py +1 -0
  19. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/__pycache__/__init__.cpython-312.pyc +0 -0
  20. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__init__.py +78 -0
  21. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/__init__.cpython-312.pyc +0 -0
  22. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/shared_config.cpython-312.pyc +0 -0
  23. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc +0 -0
  24. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc +0 -0
  25. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc +0 -0
  26. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/shared_config.py +20 -0
  27. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_i2v_14B.py +39 -0
  28. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_t2v_14B.py +33 -0
  29. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_t2v_1_3B.py +33 -0
  30. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__init__.py +16 -0
  31. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/__init__.cpython-312.pyc +0 -0
  32. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/attention.cpython-312.pyc +0 -0
  33. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/clip.cpython-312.pyc +0 -0
  34. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/model.cpython-312.pyc +0 -0
  35. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/t5.cpython-312.pyc +0 -0
  36. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/tokenizers.cpython-312.pyc +0 -0
  37. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/vae.cpython-312.pyc +0 -0
  38. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/xlm_roberta.cpython-312.pyc +0 -0
  39. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/attention.py +312 -0
  40. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/clip.py +546 -0
  41. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/model.py +958 -0
  42. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/t5.py +514 -0
  43. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/tokenizers.py +82 -0
  44. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/vae.py +760 -0
  45. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/xlm_roberta.py +170 -0
  46. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__init__.py +8 -0
  47. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/__init__.cpython-312.pyc +0 -0
  48. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/fm_solvers.cpython-312.pyc +0 -0
  49. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/fm_solvers_unipc.cpython-312.pyc +0 -0
  50. exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/fm_solvers.py +857 -0
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora.cpython-312.pyc ADDED
Binary file (39.5 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora_framepack.cpython-312.pyc ADDED
Binary file (2.3 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/networks/__pycache__/lora_wan.cpython-312.pyc ADDED
Binary file (2.3 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__init__.py ADDED
File without changes
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (196 Bytes). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/device_utils.cpython-312.pyc ADDED
Binary file (1.25 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/huggingface_utils.cpython-312.pyc ADDED
Binary file (4.56 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/model_utils.cpython-312.pyc ADDED
Binary file (6.64 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/safetensors_utils.cpython-312.pyc ADDED
Binary file (12.5 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/sai_model_spec.cpython-312.pyc ADDED
Binary file (7.29 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/__pycache__/train_utils.cpython-312.pyc ADDED
Binary file (9.16 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/device_utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def clean_memory_on_device(device):
5
+ if device.type == "cuda":
6
+ torch.cuda.empty_cache()
7
+ elif device.type == "cpu":
8
+ pass
9
+ elif device.type == "mps": # not tested
10
+ torch.mps.empty_cache()
11
+
12
+
13
+ def synchronize_device(device: torch.device):
14
+ if device.type == "cuda":
15
+ torch.cuda.synchronize()
16
+ elif device.type == "xpu":
17
+ torch.xpu.synchronize()
18
+ elif device.type == "mps":
19
+ torch.mps.synchronize()
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/huggingface_utils.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ from typing import Union, BinaryIO
3
+ from huggingface_hub import HfApi
4
+ from pathlib import Path
5
+ import argparse
6
+ import os
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+ logging.basicConfig(level=logging.INFO)
11
+
12
+
13
+ def fire_in_thread(f, *args, **kwargs):
14
+ threading.Thread(target=f, args=args, kwargs=kwargs).start()
15
+
16
+
17
+ def exists_repo(repo_id: str, repo_type: str, revision: str = "main", token: str = None):
18
+ api = HfApi(
19
+ token=token,
20
+ )
21
+ try:
22
+ api.repo_info(repo_id=repo_id, revision=revision, repo_type=repo_type)
23
+ return True
24
+ except:
25
+ return False
26
+
27
+
28
+ def upload(
29
+ args: argparse.Namespace,
30
+ src: Union[str, Path, bytes, BinaryIO],
31
+ dest_suffix: str = "",
32
+ force_sync_upload: bool = False,
33
+ ):
34
+ repo_id = args.huggingface_repo_id
35
+ repo_type = args.huggingface_repo_type
36
+ token = args.huggingface_token
37
+ path_in_repo = args.huggingface_path_in_repo + dest_suffix if args.huggingface_path_in_repo is not None else None
38
+ private = args.huggingface_repo_visibility is None or args.huggingface_repo_visibility != "public"
39
+ api = HfApi(token=token)
40
+ if not exists_repo(repo_id=repo_id, repo_type=repo_type, token=token):
41
+ try:
42
+ api.create_repo(repo_id=repo_id, repo_type=repo_type, private=private)
43
+ except Exception as e: # RepositoryNotFoundError or something else
44
+ logger.error("===========================================")
45
+ logger.error(f"failed to create HuggingFace repo / HuggingFaceのリポジトリの作成に失敗しました : {e}")
46
+ logger.error("===========================================")
47
+
48
+ is_folder = (type(src) == str and os.path.isdir(src)) or (isinstance(src, Path) and src.is_dir())
49
+
50
+ def uploader():
51
+ try:
52
+ if is_folder:
53
+ api.upload_folder(
54
+ repo_id=repo_id,
55
+ repo_type=repo_type,
56
+ folder_path=src,
57
+ path_in_repo=path_in_repo,
58
+ )
59
+ else:
60
+ api.upload_file(
61
+ repo_id=repo_id,
62
+ repo_type=repo_type,
63
+ path_or_fileobj=src,
64
+ path_in_repo=path_in_repo,
65
+ )
66
+ except Exception as e: # RuntimeError or something else
67
+ logger.error("===========================================")
68
+ logger.error(f"failed to upload to HuggingFace / HuggingFaceへのアップロードに失敗しました : {e}")
69
+ logger.error("===========================================")
70
+
71
+ if args.async_upload and not force_sync_upload:
72
+ fire_in_thread(uploader)
73
+ else:
74
+ uploader()
75
+
76
+
77
+ def list_dir(
78
+ repo_id: str,
79
+ subfolder: str,
80
+ repo_type: str,
81
+ revision: str = "main",
82
+ token: str = None,
83
+ ):
84
+ api = HfApi(
85
+ token=token,
86
+ )
87
+ repo_info = api.repo_info(repo_id=repo_id, revision=revision, repo_type=repo_type)
88
+ file_list = [file for file in repo_info.siblings if file.rfilename.startswith(subfolder)]
89
+ return file_list
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/model_utils.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ from io import BytesIO
3
+ from typing import Optional
4
+
5
+ import safetensors.torch
6
+ import torch
7
+
8
+
9
+ def model_hash(filename):
10
+ """Old model hash used by stable-diffusion-webui"""
11
+ try:
12
+ with open(filename, "rb") as file:
13
+ m = hashlib.sha256()
14
+
15
+ file.seek(0x100000)
16
+ m.update(file.read(0x10000))
17
+ return m.hexdigest()[0:8]
18
+ except FileNotFoundError:
19
+ return "NOFILE"
20
+ except IsADirectoryError: # Linux?
21
+ return "IsADirectory"
22
+ except PermissionError: # Windows
23
+ return "IsADirectory"
24
+
25
+
26
+ def calculate_sha256(filename):
27
+ """New model hash used by stable-diffusion-webui"""
28
+ try:
29
+ hash_sha256 = hashlib.sha256()
30
+ blksize = 1024 * 1024
31
+
32
+ with open(filename, "rb") as f:
33
+ for chunk in iter(lambda: f.read(blksize), b""):
34
+ hash_sha256.update(chunk)
35
+
36
+ return hash_sha256.hexdigest()
37
+ except FileNotFoundError:
38
+ return "NOFILE"
39
+ except IsADirectoryError: # Linux?
40
+ return "IsADirectory"
41
+ except PermissionError: # Windows
42
+ return "IsADirectory"
43
+
44
+
45
+ def addnet_hash_legacy(b):
46
+ """Old model hash used by sd-webui-additional-networks for .safetensors format files"""
47
+ m = hashlib.sha256()
48
+
49
+ b.seek(0x100000)
50
+ m.update(b.read(0x10000))
51
+ return m.hexdigest()[0:8]
52
+
53
+
54
+ def addnet_hash_safetensors(b):
55
+ """New model hash used by sd-webui-additional-networks for .safetensors format files"""
56
+ hash_sha256 = hashlib.sha256()
57
+ blksize = 1024 * 1024
58
+
59
+ b.seek(0)
60
+ header = b.read(8)
61
+ n = int.from_bytes(header, "little")
62
+
63
+ offset = n + 8
64
+ b.seek(offset)
65
+ for chunk in iter(lambda: b.read(blksize), b""):
66
+ hash_sha256.update(chunk)
67
+
68
+ return hash_sha256.hexdigest()
69
+
70
+
71
+ def precalculate_safetensors_hashes(tensors, metadata):
72
+ """Precalculate the model hashes needed by sd-webui-additional-networks to
73
+ save time on indexing the model later."""
74
+
75
+ # Because writing user metadata to the file can change the result of
76
+ # sd_models.model_hash(), only retain the training metadata for purposes of
77
+ # calculating the hash, as they are meant to be immutable
78
+ metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
79
+
80
+ bytes = safetensors.torch.save(tensors, metadata)
81
+ b = BytesIO(bytes)
82
+
83
+ model_hash = addnet_hash_safetensors(b)
84
+ legacy_hash = addnet_hash_legacy(b)
85
+ return model_hash, legacy_hash
86
+
87
+
88
+ def dtype_to_str(dtype: torch.dtype) -> str:
89
+ # get name of the dtype
90
+ dtype_name = str(dtype).split(".")[-1]
91
+ return dtype_name
92
+
93
+
94
+ def str_to_dtype(s: Optional[str], default_dtype: Optional[torch.dtype] = None) -> torch.dtype:
95
+ """
96
+ Convert a string to a torch.dtype
97
+
98
+ Args:
99
+ s: string representation of the dtype
100
+ default_dtype: default dtype to return if s is None
101
+
102
+ Returns:
103
+ torch.dtype: the corresponding torch.dtype
104
+
105
+ Raises:
106
+ ValueError: if the dtype is not supported
107
+
108
+ Examples:
109
+ >>> str_to_dtype("float32")
110
+ torch.float32
111
+ >>> str_to_dtype("fp32")
112
+ torch.float32
113
+ >>> str_to_dtype("float16")
114
+ torch.float16
115
+ >>> str_to_dtype("fp16")
116
+ torch.float16
117
+ >>> str_to_dtype("bfloat16")
118
+ torch.bfloat16
119
+ >>> str_to_dtype("bf16")
120
+ torch.bfloat16
121
+ >>> str_to_dtype("fp8")
122
+ torch.float8_e4m3fn
123
+ >>> str_to_dtype("fp8_e4m3fn")
124
+ torch.float8_e4m3fn
125
+ >>> str_to_dtype("fp8_e4m3fnuz")
126
+ torch.float8_e4m3fnuz
127
+ >>> str_to_dtype("fp8_e5m2")
128
+ torch.float8_e5m2
129
+ >>> str_to_dtype("fp8_e5m2fnuz")
130
+ torch.float8_e5m2fnuz
131
+ """
132
+ if s is None:
133
+ return default_dtype
134
+ if s in ["bf16", "bfloat16"]:
135
+ return torch.bfloat16
136
+ elif s in ["fp16", "float16"]:
137
+ return torch.float16
138
+ elif s in ["fp32", "float32", "float"]:
139
+ return torch.float32
140
+ elif s in ["fp8_e4m3fn", "e4m3fn", "float8_e4m3fn"]:
141
+ return torch.float8_e4m3fn
142
+ elif s in ["fp8_e4m3fnuz", "e4m3fnuz", "float8_e4m3fnuz"]:
143
+ return torch.float8_e4m3fnuz
144
+ elif s in ["fp8_e5m2", "e5m2", "float8_e5m2"]:
145
+ return torch.float8_e5m2
146
+ elif s in ["fp8_e5m2fnuz", "e5m2fnuz", "float8_e5m2fnuz"]:
147
+ return torch.float8_e5m2fnuz
148
+ elif s in ["fp8", "float8"]:
149
+ return torch.float8_e4m3fn # default fp8
150
+ else:
151
+ raise ValueError(f"Unsupported dtype: {s}")
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/safetensors_utils.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import torch
4
+ import json
5
+ import struct
6
+ from typing import Dict, Any, Union, Optional
7
+
8
+ from safetensors.torch import load_file
9
+
10
+
11
+ def mem_eff_save_file(tensors: Dict[str, torch.Tensor], filename: str, metadata: Dict[str, Any] = None):
12
+ """
13
+ memory efficient save file
14
+ """
15
+
16
+ _TYPES = {
17
+ torch.float64: "F64",
18
+ torch.float32: "F32",
19
+ torch.float16: "F16",
20
+ torch.bfloat16: "BF16",
21
+ torch.int64: "I64",
22
+ torch.int32: "I32",
23
+ torch.int16: "I16",
24
+ torch.int8: "I8",
25
+ torch.uint8: "U8",
26
+ torch.bool: "BOOL",
27
+ getattr(torch, "float8_e5m2", None): "F8_E5M2",
28
+ getattr(torch, "float8_e4m3fn", None): "F8_E4M3",
29
+ }
30
+ _ALIGN = 256
31
+
32
+ def validate_metadata(metadata: Dict[str, Any]) -> Dict[str, str]:
33
+ validated = {}
34
+ for key, value in metadata.items():
35
+ if not isinstance(key, str):
36
+ raise ValueError(f"Metadata key must be a string, got {type(key)}")
37
+ if not isinstance(value, str):
38
+ print(f"Warning: Metadata value for key '{key}' is not a string. Converting to string.")
39
+ validated[key] = str(value)
40
+ else:
41
+ validated[key] = value
42
+ return validated
43
+
44
+ # print(f"Using memory efficient save file: {filename}")
45
+
46
+ header = {}
47
+ offset = 0
48
+ if metadata:
49
+ header["__metadata__"] = validate_metadata(metadata)
50
+ for k, v in tensors.items():
51
+ if v.numel() == 0: # empty tensor
52
+ header[k] = {"dtype": _TYPES[v.dtype], "shape": list(v.shape), "data_offsets": [offset, offset]}
53
+ else:
54
+ size = v.numel() * v.element_size()
55
+ header[k] = {"dtype": _TYPES[v.dtype], "shape": list(v.shape), "data_offsets": [offset, offset + size]}
56
+ offset += size
57
+
58
+ hjson = json.dumps(header).encode("utf-8")
59
+ hjson += b" " * (-(len(hjson) + 8) % _ALIGN)
60
+
61
+ with open(filename, "wb") as f:
62
+ f.write(struct.pack("<Q", len(hjson)))
63
+ f.write(hjson)
64
+
65
+ for k, v in tensors.items():
66
+ if v.numel() == 0:
67
+ continue
68
+ if v.is_cuda:
69
+ # Direct GPU to disk save
70
+ with torch.cuda.device(v.device):
71
+ if v.dim() == 0: # if scalar, need to add a dimension to work with view
72
+ v = v.unsqueeze(0)
73
+ tensor_bytes = v.contiguous().view(torch.uint8)
74
+ tensor_bytes.cpu().numpy().tofile(f)
75
+ else:
76
+ # CPU tensor save
77
+ if v.dim() == 0: # if scalar, need to add a dimension to work with view
78
+ v = v.unsqueeze(0)
79
+ v.contiguous().view(torch.uint8).numpy().tofile(f)
80
+
81
+
82
+ class MemoryEfficientSafeOpen:
83
+ # does not support metadata loading
84
+ def __init__(self, filename):
85
+ self.filename = filename
86
+ self.file = open(filename, "rb")
87
+ self.header, self.header_size = self._read_header()
88
+
89
+ def __enter__(self):
90
+ return self
91
+
92
+ def __exit__(self, exc_type, exc_val, exc_tb):
93
+ self.file.close()
94
+
95
+ def keys(self):
96
+ return [k for k in self.header.keys() if k != "__metadata__"]
97
+
98
+ def metadata(self) -> Dict[str, str]:
99
+ return self.header.get("__metadata__", {})
100
+
101
+ def get_tensor(self, key):
102
+ if key not in self.header:
103
+ raise KeyError(f"Tensor '{key}' not found in the file")
104
+
105
+ metadata = self.header[key]
106
+ offset_start, offset_end = metadata["data_offsets"]
107
+
108
+ if offset_start == offset_end:
109
+ tensor_bytes = None
110
+ else:
111
+ # adjust offset by header size
112
+ self.file.seek(self.header_size + 8 + offset_start)
113
+ tensor_bytes = self.file.read(offset_end - offset_start)
114
+
115
+ return self._deserialize_tensor(tensor_bytes, metadata)
116
+
117
+ def _read_header(self):
118
+ header_size = struct.unpack("<Q", self.file.read(8))[0]
119
+ header_json = self.file.read(header_size).decode("utf-8")
120
+ return json.loads(header_json), header_size
121
+
122
+ def _deserialize_tensor(self, tensor_bytes, metadata):
123
+ dtype = self._get_torch_dtype(metadata["dtype"])
124
+ shape = metadata["shape"]
125
+
126
+ if tensor_bytes is None:
127
+ byte_tensor = torch.empty(0, dtype=torch.uint8)
128
+ else:
129
+ tensor_bytes = bytearray(tensor_bytes) # make it writable
130
+ byte_tensor = torch.frombuffer(tensor_bytes, dtype=torch.uint8)
131
+
132
+ # process float8 types
133
+ if metadata["dtype"] in ["F8_E5M2", "F8_E4M3"]:
134
+ return self._convert_float8(byte_tensor, metadata["dtype"], shape)
135
+
136
+ # convert to the target dtype and reshape
137
+ return byte_tensor.view(dtype).reshape(shape)
138
+
139
+ @staticmethod
140
+ def _get_torch_dtype(dtype_str):
141
+ dtype_map = {
142
+ "F64": torch.float64,
143
+ "F32": torch.float32,
144
+ "F16": torch.float16,
145
+ "BF16": torch.bfloat16,
146
+ "I64": torch.int64,
147
+ "I32": torch.int32,
148
+ "I16": torch.int16,
149
+ "I8": torch.int8,
150
+ "U8": torch.uint8,
151
+ "BOOL": torch.bool,
152
+ }
153
+ # add float8 types if available
154
+ if hasattr(torch, "float8_e5m2"):
155
+ dtype_map["F8_E5M2"] = torch.float8_e5m2
156
+ if hasattr(torch, "float8_e4m3fn"):
157
+ dtype_map["F8_E4M3"] = torch.float8_e4m3fn
158
+ return dtype_map.get(dtype_str)
159
+
160
+ @staticmethod
161
+ def _convert_float8(byte_tensor, dtype_str, shape):
162
+ if dtype_str == "F8_E5M2" and hasattr(torch, "float8_e5m2"):
163
+ return byte_tensor.view(torch.float8_e5m2).reshape(shape)
164
+ elif dtype_str == "F8_E4M3" and hasattr(torch, "float8_e4m3fn"):
165
+ return byte_tensor.view(torch.float8_e4m3fn).reshape(shape)
166
+ else:
167
+ # # convert to float16 if float8 is not supported
168
+ # print(f"Warning: {dtype_str} is not supported in this PyTorch version. Converting to float16.")
169
+ # return byte_tensor.view(torch.uint8).to(torch.float16).reshape(shape)
170
+ raise ValueError(f"Unsupported float8 type: {dtype_str} (upgrade PyTorch to support float8 types)")
171
+
172
+
173
+ def load_safetensors(
174
+ path: str, device: Union[str, torch.device], disable_mmap: bool = False, dtype: Optional[torch.dtype] = None
175
+ ) -> dict[str, torch.Tensor]:
176
+ if disable_mmap:
177
+ # return safetensors.torch.load(open(path, "rb").read())
178
+ # use experimental loader
179
+ # logger.info(f"Loading without mmap (experimental)")
180
+ state_dict = {}
181
+ with MemoryEfficientSafeOpen(path) as f:
182
+ for key in f.keys():
183
+ state_dict[key] = f.get_tensor(key).to(device, dtype=dtype)
184
+ return state_dict
185
+ else:
186
+ try:
187
+ state_dict = load_file(path, device=device)
188
+ except:
189
+ state_dict = load_file(path) # prevent device invalid Error
190
+ if dtype is not None:
191
+ for key in state_dict.keys():
192
+ state_dict[key] = state_dict[key].to(dtype=dtype)
193
+ return state_dict
194
+
195
+
196
+ def load_split_weights(
197
+ file_path: str, device: Union[str, torch.device] = "cpu", disable_mmap: bool = False
198
+ ) -> Dict[str, torch.Tensor]:
199
+ """
200
+ Load split weights from a file. If the file name ends with 00001-of-00004 etc, it will load all files with the same prefix.
201
+ dtype is as is, no conversion is done.
202
+ """
203
+ device = torch.device(device)
204
+
205
+ # if the file name ends with 00001-of-00004 etc, we need to load the files with the same prefix
206
+ basename = os.path.basename(file_path)
207
+ match = re.match(r"^(.*?)(\d+)-of-(\d+)\.safetensors$", basename)
208
+ if match:
209
+ prefix = basename[: match.start(2)]
210
+ count = int(match.group(3))
211
+ state_dict = {}
212
+ for i in range(count):
213
+ filename = f"{prefix}{i+1:05d}-of-{count:05d}.safetensors"
214
+ filepath = os.path.join(os.path.dirname(file_path), filename)
215
+ if os.path.exists(filepath):
216
+ state_dict.update(load_safetensors(filepath, device=device, disable_mmap=disable_mmap))
217
+ else:
218
+ raise FileNotFoundError(f"File {filepath} not found")
219
+ else:
220
+ state_dict = load_safetensors(file_path, device=device, disable_mmap=disable_mmap)
221
+ return state_dict
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/sai_model_spec.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # based on https://github.com/Stability-AI/ModelSpec
2
+ import datetime
3
+ import hashlib
4
+ from io import BytesIO
5
+ import os
6
+ from typing import List, Optional, Tuple, Union
7
+ import safetensors
8
+ import logging
9
+
10
+ from musubi_tuner.dataset.image_video_dataset import ARCHITECTURE_HUNYUAN_VIDEO, ARCHITECTURE_WAN, ARCHITECTURE_FRAMEPACK
11
+
12
+ logger = logging.getLogger(__name__)
13
+ logger.setLevel(logging.INFO)
14
+
15
+
16
+ r"""
17
+ # Metadata Example
18
+ metadata = {
19
+ # === Must ===
20
+ "modelspec.sai_model_spec": "1.0.0", # Required version ID for the spec
21
+ "modelspec.architecture": "stable-diffusion-xl-v1-base", # Architecture, reference the ID of the original model of the arch to match the ID
22
+ "modelspec.implementation": "sgm",
23
+ "modelspec.title": "Example Model Version 1.0", # Clean, human-readable title. May use your own phrasing/language/etc
24
+ # === Should ===
25
+ "modelspec.author": "Example Corp", # Your name or company name
26
+ "modelspec.description": "This is my example model to show you how to do it!", # Describe the model in your own words/language/etc. Focus on what users need to know
27
+ "modelspec.date": "2023-07-20", # ISO-8601 compliant date of when the model was created
28
+ # === Can ===
29
+ "modelspec.license": "ExampleLicense-1.0", # eg CreativeML Open RAIL, etc.
30
+ "modelspec.usage_hint": "Use keyword 'example'" # In your own language, very short hints about how the user should use the model
31
+ }
32
+ """
33
+
34
+ BASE_METADATA = {
35
+ # === Must ===
36
+ "modelspec.sai_model_spec": "1.0.0", # Required version ID for the spec
37
+ "modelspec.architecture": None,
38
+ "modelspec.implementation": None,
39
+ "modelspec.title": None,
40
+ "modelspec.resolution": None,
41
+ # === Should ===
42
+ "modelspec.description": None,
43
+ "modelspec.author": None,
44
+ "modelspec.date": None,
45
+ # === Can ===
46
+ "modelspec.license": None,
47
+ "modelspec.tags": None,
48
+ "modelspec.merged_from": None,
49
+ "modelspec.prediction_type": None,
50
+ "modelspec.timestep_range": None,
51
+ "modelspec.encoder_layer": None,
52
+ }
53
+
54
+ # 別に使うやつだけ定義
55
+ MODELSPEC_TITLE = "modelspec.title"
56
+
57
+ ARCH_HUNYUAN_VIDEO = "hunyuan-video"
58
+
59
+ # Official Wan2.1 weights does not have sai_model_spec, so we use this as an architecture name
60
+ ARCH_WAN = "wan2.1"
61
+
62
+ ARCH_FRAMEPACK = "framepack"
63
+
64
+ ADAPTER_LORA = "lora"
65
+
66
+ IMPL_HUNYUAN_VIDEO = "https://github.com/Tencent/HunyuanVideo"
67
+ IMPL_WAN = "https://github.com/Wan-Video/Wan2.1"
68
+ IMPL_FRAMEPACK = "https://github.com/lllyasviel/FramePack"
69
+
70
+ PRED_TYPE_EPSILON = "epsilon"
71
+ # PRED_TYPE_V = "v"
72
+
73
+
74
+ def load_bytes_in_safetensors(tensors):
75
+ bytes = safetensors.torch.save(tensors)
76
+ b = BytesIO(bytes)
77
+
78
+ b.seek(0)
79
+ header = b.read(8)
80
+ n = int.from_bytes(header, "little")
81
+
82
+ offset = n + 8
83
+ b.seek(offset)
84
+
85
+ return b.read()
86
+
87
+
88
+ def precalculate_safetensors_hashes(state_dict):
89
+ # calculate each tensor one by one to reduce memory usage
90
+ hash_sha256 = hashlib.sha256()
91
+ for tensor in state_dict.values():
92
+ single_tensor_sd = {"tensor": tensor}
93
+ bytes_for_tensor = load_bytes_in_safetensors(single_tensor_sd)
94
+ hash_sha256.update(bytes_for_tensor)
95
+
96
+ return f"0x{hash_sha256.hexdigest()}"
97
+
98
+
99
+ def update_hash_sha256(metadata: dict, state_dict: dict):
100
+ raise NotImplementedError
101
+
102
+
103
+ def build_metadata(
104
+ state_dict: Optional[dict],
105
+ architecture: str,
106
+ timestamp: float,
107
+ title: Optional[str] = None,
108
+ reso: Optional[Union[int, Tuple[int, int]]] = None,
109
+ author: Optional[str] = None,
110
+ description: Optional[str] = None,
111
+ license: Optional[str] = None,
112
+ tags: Optional[str] = None,
113
+ merged_from: Optional[str] = None,
114
+ timesteps: Optional[Tuple[int, int]] = None,
115
+ is_lora: bool = True,
116
+ ):
117
+ metadata = {}
118
+ metadata.update(BASE_METADATA)
119
+
120
+ # TODO implement if we can calculate hash without loading all tensors
121
+ # if state_dict is not None:
122
+ # hash = precalculate_safetensors_hashes(state_dict)
123
+ # metadata["modelspec.hash_sha256"] = hash
124
+
125
+ # arch = ARCH_HUNYUAN_VIDEO
126
+ if architecture == ARCHITECTURE_HUNYUAN_VIDEO:
127
+ arch = ARCH_HUNYUAN_VIDEO
128
+ impl = IMPL_HUNYUAN_VIDEO
129
+ elif architecture == ARCHITECTURE_WAN:
130
+ arch = ARCH_WAN
131
+ impl = IMPL_WAN
132
+ elif architecture == ARCHITECTURE_FRAMEPACK:
133
+ arch = ARCH_FRAMEPACK
134
+ impl = IMPL_FRAMEPACK
135
+ else:
136
+ raise ValueError(f"Unknown architecture: {architecture}")
137
+
138
+ if is_lora:
139
+ arch += f"/{ADAPTER_LORA}"
140
+ metadata["modelspec.architecture"] = arch
141
+
142
+ metadata["modelspec.implementation"] = impl
143
+
144
+ if title is None:
145
+ title = "LoRA" if is_lora else "Hunyuan-Video"
146
+ title += f"@{timestamp}"
147
+ metadata[MODELSPEC_TITLE] = title
148
+
149
+ if author is not None:
150
+ metadata["modelspec.author"] = author
151
+ else:
152
+ del metadata["modelspec.author"]
153
+
154
+ if description is not None:
155
+ metadata["modelspec.description"] = description
156
+ else:
157
+ del metadata["modelspec.description"]
158
+
159
+ if merged_from is not None:
160
+ metadata["modelspec.merged_from"] = merged_from
161
+ else:
162
+ del metadata["modelspec.merged_from"]
163
+
164
+ if license is not None:
165
+ metadata["modelspec.license"] = license
166
+ else:
167
+ del metadata["modelspec.license"]
168
+
169
+ if tags is not None:
170
+ metadata["modelspec.tags"] = tags
171
+ else:
172
+ del metadata["modelspec.tags"]
173
+
174
+ # remove microsecond from time
175
+ int_ts = int(timestamp)
176
+
177
+ # time to iso-8601 compliant date
178
+ date = datetime.datetime.fromtimestamp(int_ts).isoformat()
179
+ metadata["modelspec.date"] = date
180
+
181
+ if reso is not None:
182
+ # comma separated to tuple
183
+ if isinstance(reso, str):
184
+ reso = tuple(map(int, reso.split(",")))
185
+ if len(reso) == 1:
186
+ reso = (reso[0], reso[0])
187
+ else:
188
+ # resolution is defined in dataset, so use default
189
+ reso = (1280, 720)
190
+ if isinstance(reso, int):
191
+ reso = (reso, reso)
192
+
193
+ metadata["modelspec.resolution"] = f"{reso[0]}x{reso[1]}"
194
+
195
+ # metadata["modelspec.prediction_type"] = PRED_TYPE_EPSILON
196
+ del metadata["modelspec.prediction_type"]
197
+
198
+ if timesteps is not None:
199
+ if isinstance(timesteps, str) or isinstance(timesteps, int):
200
+ timesteps = (timesteps, timesteps)
201
+ if len(timesteps) == 1:
202
+ timesteps = (timesteps[0], timesteps[0])
203
+ metadata["modelspec.timestep_range"] = f"{timesteps[0]},{timesteps[1]}"
204
+ else:
205
+ del metadata["modelspec.timestep_range"]
206
+
207
+ # if clip_skip is not None:
208
+ # metadata["modelspec.encoder_layer"] = f"{clip_skip}"
209
+ # else:
210
+ del metadata["modelspec.encoder_layer"]
211
+
212
+ # # assert all values are filled
213
+ # assert all([v is not None for v in metadata.values()]), metadata
214
+ if not all([v is not None for v in metadata.values()]):
215
+ logger.error(f"Internal error: some metadata values are None: {metadata}")
216
+
217
+ return metadata
218
+
219
+
220
+ # region utils
221
+
222
+
223
+ def get_title(metadata: dict) -> Optional[str]:
224
+ return metadata.get(MODELSPEC_TITLE, None)
225
+
226
+
227
+ def load_metadata_from_safetensors(model: str) -> dict:
228
+ if not model.endswith(".safetensors"):
229
+ return {}
230
+
231
+ with safetensors.safe_open(model, framework="pt") as f:
232
+ metadata = f.metadata()
233
+ if metadata is None:
234
+ metadata = {}
235
+ return metadata
236
+
237
+
238
+ def build_merged_from(models: List[str]) -> str:
239
+ def get_title(model: str):
240
+ metadata = load_metadata_from_safetensors(model)
241
+ title = metadata.get(MODELSPEC_TITLE, None)
242
+ if title is None:
243
+ title = os.path.splitext(os.path.basename(model))[0] # use filename
244
+ return title
245
+
246
+ titles = [get_title(model) for model in models]
247
+ return ", ".join(titles)
248
+
249
+
250
+ # endregion
251
+
252
+
253
+ r"""
254
+ if __name__ == "__main__":
255
+ import argparse
256
+ import torch
257
+ from safetensors.torch import load_file
258
+ from library import train_util
259
+
260
+ parser = argparse.ArgumentParser()
261
+ parser.add_argument("--ckpt", type=str, required=True)
262
+ args = parser.parse_args()
263
+
264
+ print(f"Loading {args.ckpt}")
265
+ state_dict = load_file(args.ckpt)
266
+
267
+ print(f"Calculating metadata")
268
+ metadata = get(state_dict, False, False, False, False, "sgm", False, False, "title", "date", 256, 1000, 0)
269
+ print(metadata)
270
+ del state_dict
271
+
272
+ # by reference implementation
273
+ with open(args.ckpt, mode="rb") as file_data:
274
+ file_hash = hashlib.sha256()
275
+ head_len = struct.unpack("Q", file_data.read(8)) # int64 header length prefix
276
+ header = json.loads(file_data.read(head_len[0])) # header itself, json string
277
+ content = (
278
+ file_data.read()
279
+ ) # All other content is tightly packed tensors. Copy to RAM for simplicity, but you can avoid this read with a more careful FS-dependent impl.
280
+ file_hash.update(content)
281
+ # ===== Update the hash for modelspec =====
282
+ by_ref = f"0x{file_hash.hexdigest()}"
283
+ print(by_ref)
284
+ print("is same?", by_ref == metadata["modelspec.hash_sha256"])
285
+
286
+ """
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/utils/train_utils.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import os
4
+ import shutil
5
+
6
+ import accelerate
7
+ import torch
8
+
9
+ from musubi_tuner.utils import huggingface_utils
10
+
11
+ logger = logging.getLogger(__name__)
12
+ logging.basicConfig(level=logging.INFO)
13
+
14
+
15
+ # checkpointファイル名
16
+ EPOCH_STATE_NAME = "{}-{:06d}-state"
17
+ EPOCH_FILE_NAME = "{}-{:06d}"
18
+ EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
19
+ LAST_STATE_NAME = "{}-state"
20
+ STEP_STATE_NAME = "{}-step{:08d}-state"
21
+ STEP_FILE_NAME = "{}-step{:08d}"
22
+ STEP_DIFFUSERS_DIR_NAME = "{}-step{:08d}"
23
+
24
+
25
+ def get_sanitized_config_or_none(args: argparse.Namespace):
26
+ # if `--log_config` is enabled, return args for logging. if not, return None.
27
+ # when `--log_config is enabled, filter out sensitive values from args
28
+ # if wandb is not enabled, the log is not exposed to the public, but it is fine to filter out sensitive values to be safe
29
+
30
+ if not args.log_config:
31
+ return None
32
+
33
+ sensitive_args = ["wandb_api_key", "huggingface_token"]
34
+ sensitive_path_args = [
35
+ "dit",
36
+ "vae",
37
+ "text_encoder1",
38
+ "text_encoder2",
39
+ "image_encoder",
40
+ "base_weights",
41
+ "network_weights",
42
+ "output_dir",
43
+ "logging_dir",
44
+ ]
45
+ filtered_args = {}
46
+ for k, v in vars(args).items():
47
+ # filter out sensitive values and convert to string if necessary
48
+ if k not in sensitive_args + sensitive_path_args:
49
+ # Accelerate values need to have type `bool`,`str`, `float`, `int`, or `None`.
50
+ if v is None or isinstance(v, bool) or isinstance(v, str) or isinstance(v, float) or isinstance(v, int):
51
+ filtered_args[k] = v
52
+ # accelerate does not support lists
53
+ elif isinstance(v, list):
54
+ filtered_args[k] = f"{v}"
55
+ # accelerate does not support objects
56
+ elif isinstance(v, object):
57
+ filtered_args[k] = f"{v}"
58
+
59
+ return filtered_args
60
+
61
+
62
+ class LossRecorder:
63
+ def __init__(self):
64
+ self.loss_list: list[float] = []
65
+ self.loss_total: float = 0.0
66
+
67
+ def add(self, *, epoch: int, step: int, loss: float) -> None:
68
+ if epoch == 0:
69
+ self.loss_list.append(loss)
70
+ else:
71
+ while len(self.loss_list) <= step:
72
+ self.loss_list.append(0.0)
73
+ self.loss_total -= self.loss_list[step]
74
+ self.loss_list[step] = loss
75
+ self.loss_total += loss
76
+
77
+ @property
78
+ def moving_average(self) -> float:
79
+ return self.loss_total / len(self.loss_list)
80
+
81
+
82
+ def get_epoch_ckpt_name(model_name, epoch_no: int):
83
+ return EPOCH_FILE_NAME.format(model_name, epoch_no) + ".safetensors"
84
+
85
+
86
+ def get_step_ckpt_name(model_name, step_no: int):
87
+ return STEP_FILE_NAME.format(model_name, step_no) + ".safetensors"
88
+
89
+
90
+ def get_last_ckpt_name(model_name):
91
+ return model_name + ".safetensors"
92
+
93
+
94
+ def get_remove_epoch_no(args: argparse.Namespace, epoch_no: int):
95
+ if args.save_last_n_epochs is None:
96
+ return None
97
+
98
+ remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
99
+ if remove_epoch_no < 0:
100
+ return None
101
+ return remove_epoch_no
102
+
103
+
104
+ def get_remove_step_no(args: argparse.Namespace, step_no: int):
105
+ if args.save_last_n_steps is None:
106
+ return None
107
+
108
+ # calculate the step number to remove from the last_n_steps and save_every_n_steps
109
+ # e.g. if save_every_n_steps=10, save_last_n_steps=30, at step 50, keep 30 steps and remove step 10
110
+ remove_step_no = step_no - args.save_last_n_steps - 1
111
+ remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)
112
+ if remove_step_no < 0:
113
+ return None
114
+ return remove_step_no
115
+
116
+
117
+ def save_and_remove_state_on_epoch_end(args: argparse.Namespace, accelerator: accelerate.Accelerator, epoch_no: int):
118
+ model_name = args.output_name
119
+
120
+ logger.info("")
121
+ logger.info(f"saving state at epoch {epoch_no}")
122
+ os.makedirs(args.output_dir, exist_ok=True)
123
+
124
+ state_dir = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no))
125
+ accelerator.save_state(state_dir)
126
+ if args.save_state_to_huggingface:
127
+ logger.info("uploading state to huggingface.")
128
+ huggingface_utils.upload(args, state_dir, "/" + EPOCH_STATE_NAME.format(model_name, epoch_no))
129
+
130
+ last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
131
+ if last_n_epochs is not None:
132
+ remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
133
+ state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
134
+ if os.path.exists(state_dir_old):
135
+ logger.info(f"removing old state: {state_dir_old}")
136
+ shutil.rmtree(state_dir_old)
137
+
138
+
139
+ def save_and_remove_state_stepwise(args: argparse.Namespace, accelerator: accelerate.Accelerator, step_no: int):
140
+ model_name = args.output_name
141
+
142
+ logger.info("")
143
+ logger.info(f"saving state at step {step_no}")
144
+ os.makedirs(args.output_dir, exist_ok=True)
145
+
146
+ state_dir = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, step_no))
147
+ accelerator.save_state(state_dir)
148
+ if args.save_state_to_huggingface:
149
+ logger.info("uploading state to huggingface.")
150
+ huggingface_utils.upload(args, state_dir, "/" + STEP_STATE_NAME.format(model_name, step_no))
151
+
152
+ last_n_steps = args.save_last_n_steps_state if args.save_last_n_steps_state else args.save_last_n_steps
153
+ if last_n_steps is not None:
154
+ # last_n_steps前のstep_noから、save_every_n_stepsの倍数のstep_noを計算して削除する
155
+ remove_step_no = step_no - last_n_steps - 1
156
+ remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)
157
+
158
+ if remove_step_no > 0:
159
+ state_dir_old = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, remove_step_no))
160
+ if os.path.exists(state_dir_old):
161
+ logger.info(f"removing old state: {state_dir_old}")
162
+ shutil.rmtree(state_dir_old)
163
+
164
+
165
+ def save_state_on_train_end(args: argparse.Namespace, accelerator: accelerate.Accelerator):
166
+ model_name = args.output_name
167
+
168
+ logger.info("")
169
+ logger.info("saving last state.")
170
+ os.makedirs(args.output_dir, exist_ok=True)
171
+
172
+ state_dir = os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name))
173
+ accelerator.save_state(state_dir)
174
+
175
+ if args.save_state_to_huggingface:
176
+ logger.info("uploading last state to huggingface.")
177
+ huggingface_utils.upload(args, state_dir, "/" + LAST_STATE_NAME.format(model_name))
178
+
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # from . import configs, distributed, modules
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (194 Bytes). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__init__.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import copy
3
+ import os
4
+ import torch
5
+
6
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
7
+
8
+ from musubi_tuner.wan.configs.wan_i2v_14B import i2v_14B
9
+ from musubi_tuner.wan.configs.wan_t2v_1_3B import t2v_1_3B
10
+ from musubi_tuner.wan.configs.wan_t2v_14B import t2v_14B
11
+
12
+ # the config of t2i_14B is the same as t2v_14B
13
+ t2i_14B = copy.deepcopy(t2v_14B)
14
+ t2i_14B.__name__ = "Config: Wan T2I 14B"
15
+
16
+ # the config of flf2v_14B is the same as i2v_14B
17
+ flf2v_14B = copy.deepcopy(i2v_14B)
18
+ flf2v_14B.__name__ = "Config: Wan FLF2V 14B"
19
+ flf2v_14B.sample_neg_prompt = "镜头切换," + flf2v_14B.sample_neg_prompt
20
+ flf2v_14B.i2v = False
21
+ flf2v_14B.flf2v = True # this is a first and last frame model, so set flf2v to True
22
+
23
+ # support Fun models: deepcopy and change some configs. FC denotes Fun Control
24
+ t2v_1_3B_FC = copy.deepcopy(t2v_1_3B)
25
+ t2v_1_3B_FC.__name__ = "Config: Wan-Fun-Control T2V 1.3B"
26
+ t2v_1_3B_FC.i2v = True # this is strange, but Fun-Control model needs this because it has img cross-attention
27
+ t2v_1_3B_FC.in_dim = 48
28
+ t2v_1_3B_FC.is_fun_control = True
29
+
30
+ t2v_14B_FC = copy.deepcopy(t2v_14B)
31
+ t2v_14B_FC.__name__ = "Config: Wan-Fun-Control T2V 14B"
32
+ t2v_14B_FC.i2v = True # this is strange, but Fun-Control model needs this because it has img cross-attention
33
+ t2v_14B_FC.in_dim = 48 # same as i2v_14B, use zeros for image latents
34
+ t2v_14B_FC.is_fun_control = True
35
+
36
+ i2v_14B_FC = copy.deepcopy(i2v_14B)
37
+ i2v_14B_FC.__name__ = "Config: Wan-Fun-Control I2V 14B"
38
+ i2v_14B_FC.in_dim = 48
39
+ i2v_14B_FC.is_fun_control = True
40
+
41
+ WAN_CONFIGS = {
42
+ "t2v-14B": t2v_14B,
43
+ "t2v-1.3B": t2v_1_3B,
44
+ "i2v-14B": i2v_14B,
45
+ "t2i-14B": t2i_14B,
46
+ "flf2v-14B": flf2v_14B,
47
+ # Fun Control models
48
+ "t2v-1.3B-FC": t2v_1_3B_FC,
49
+ "t2v-14B-FC": t2v_14B_FC,
50
+ "i2v-14B-FC": i2v_14B_FC,
51
+ }
52
+
53
+ SIZE_CONFIGS = {
54
+ "720*1280": (720, 1280),
55
+ "1280*720": (1280, 720),
56
+ "480*832": (480, 832),
57
+ "832*480": (832, 480),
58
+ "1024*1024": (1024, 1024),
59
+ }
60
+
61
+ MAX_AREA_CONFIGS = {
62
+ "720*1280": 720 * 1280,
63
+ "1280*720": 1280 * 720,
64
+ "480*832": 480 * 832,
65
+ "832*480": 832 * 480,
66
+ }
67
+
68
+ SUPPORTED_SIZES = {
69
+ "t2v-14B": ("720*1280", "1280*720", "480*832", "832*480"),
70
+ "t2v-1.3B": ("480*832", "832*480"),
71
+ "i2v-14B": ("720*1280", "1280*720", "480*832", "832*480"),
72
+ "t2i-14B": tuple(SIZE_CONFIGS.keys()),
73
+ "flf2v-14B": ("720*1280", "1280*720", "480*832", "832*480"),
74
+ # Fun Control models
75
+ "t2v-1.3B-FC": ("480*832", "832*480"),
76
+ "t2v-14B-FC": ("720*1280", "1280*720", "480*832", "832*480"),
77
+ "i2v-14B-FC": ("720*1280", "1280*720", "480*832", "832*480"),
78
+ }
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (2.06 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/shared_config.cpython-312.pyc ADDED
Binary file (1.09 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc ADDED
Binary file (1.49 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc ADDED
Binary file (1.19 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc ADDED
Binary file (1.2 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/shared_config.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ #------------------------ Wan shared config ------------------------#
6
+ wan_shared_cfg = EasyDict()
7
+
8
+ # t5
9
+ wan_shared_cfg.t5_model = 'umt5_xxl'
10
+ wan_shared_cfg.t5_dtype = torch.bfloat16
11
+ wan_shared_cfg.text_len = 512
12
+
13
+ # transformer
14
+ wan_shared_cfg.param_dtype = torch.bfloat16
15
+ wan_shared_cfg.out_dim = 16
16
+
17
+ # inference
18
+ wan_shared_cfg.num_train_timesteps = 1000
19
+ wan_shared_cfg.sample_fps = 16
20
+ wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_i2v_14B.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ from musubi_tuner.wan.configs.shared_config import wan_shared_cfg
6
+
7
+ # ------------------------ Wan I2V 14B ------------------------#
8
+
9
+ i2v_14B = EasyDict(__name__="Config: Wan I2V 14B")
10
+ i2v_14B.update(wan_shared_cfg)
11
+ i2v_14B.i2v = True
12
+ i2v_14B.is_fun_control = False
13
+ i2v_14B.flf2v = False
14
+
15
+ i2v_14B.t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
16
+ i2v_14B.t5_tokenizer = "google/umt5-xxl"
17
+
18
+ # clip
19
+ i2v_14B.clip_model = "clip_xlm_roberta_vit_h_14"
20
+ i2v_14B.clip_dtype = torch.float16
21
+ i2v_14B.clip_checkpoint = "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"
22
+ i2v_14B.clip_tokenizer = "xlm-roberta-large"
23
+
24
+ # vae
25
+ i2v_14B.vae_checkpoint = "Wan2.1_VAE.pth"
26
+ i2v_14B.vae_stride = (4, 8, 8)
27
+
28
+ # transformer
29
+ i2v_14B.patch_size = (1, 2, 2)
30
+ i2v_14B.dim = 5120
31
+ i2v_14B.ffn_dim = 13824
32
+ i2v_14B.freq_dim = 256
33
+ i2v_14B.in_dim = 36
34
+ i2v_14B.num_heads = 40
35
+ i2v_14B.num_layers = 40
36
+ i2v_14B.window_size = (-1, -1)
37
+ i2v_14B.qk_norm = True
38
+ i2v_14B.cross_attn_norm = True
39
+ i2v_14B.eps = 1e-6
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_t2v_14B.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from musubi_tuner.wan.configs.shared_config import wan_shared_cfg
5
+
6
+ # ------------------------ Wan T2V 14B ------------------------#
7
+
8
+ t2v_14B = EasyDict(__name__="Config: Wan T2V 14B")
9
+ t2v_14B.update(wan_shared_cfg)
10
+ t2v_14B.i2v = False
11
+ t2v_14B.is_fun_control = False
12
+ t2v_14B.flf2v = False
13
+
14
+ # t5
15
+ t2v_14B.t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
16
+ t2v_14B.t5_tokenizer = "google/umt5-xxl"
17
+
18
+ # vae
19
+ t2v_14B.vae_checkpoint = "Wan2.1_VAE.pth"
20
+ t2v_14B.vae_stride = (4, 8, 8)
21
+
22
+ # transformer
23
+ t2v_14B.patch_size = (1, 2, 2)
24
+ t2v_14B.dim = 5120
25
+ t2v_14B.ffn_dim = 13824
26
+ t2v_14B.freq_dim = 256
27
+ t2v_14B.in_dim = 16
28
+ t2v_14B.num_heads = 40
29
+ t2v_14B.num_layers = 40
30
+ t2v_14B.window_size = (-1, -1)
31
+ t2v_14B.qk_norm = True
32
+ t2v_14B.cross_attn_norm = True
33
+ t2v_14B.eps = 1e-6
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/configs/wan_t2v_1_3B.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from musubi_tuner.wan.configs.shared_config import wan_shared_cfg
5
+
6
+ # ------------------------ Wan T2V 1.3B ------------------------#
7
+
8
+ t2v_1_3B = EasyDict(__name__="Config: Wan T2V 1.3B")
9
+ t2v_1_3B.update(wan_shared_cfg)
10
+ t2v_1_3B.i2v = False
11
+ t2v_1_3B.is_fun_control = False
12
+ t2v_1_3B.flf2v = False
13
+
14
+ # t5
15
+ t2v_1_3B.t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
16
+ t2v_1_3B.t5_tokenizer = "google/umt5-xxl"
17
+
18
+ # vae
19
+ t2v_1_3B.vae_checkpoint = "Wan2.1_VAE.pth"
20
+ t2v_1_3B.vae_stride = (4, 8, 8)
21
+
22
+ # transformer
23
+ t2v_1_3B.patch_size = (1, 2, 2)
24
+ t2v_1_3B.dim = 1536
25
+ t2v_1_3B.ffn_dim = 8960
26
+ t2v_1_3B.freq_dim = 256
27
+ t2v_1_3B.in_dim = 16
28
+ t2v_1_3B.num_heads = 12
29
+ t2v_1_3B.num_layers = 30
30
+ t2v_1_3B.window_size = (-1, -1)
31
+ t2v_1_3B.qk_norm = True
32
+ t2v_1_3B.cross_attn_norm = True
33
+ t2v_1_3B.eps = 1e-6
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from musubi_tuner.wan.modules.attention import flash_attention
2
+ from musubi_tuner.wan.modules.model import WanModel
3
+ from musubi_tuner.wan.modules.t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
4
+ from musubi_tuner.wan.modules.tokenizers import HuggingfaceTokenizer
5
+ from musubi_tuner.wan.modules.vae import WanVAE
6
+
7
+ __all__ = [
8
+ 'WanVAE',
9
+ 'WanModel',
10
+ 'T5Model',
11
+ 'T5Encoder',
12
+ 'T5Decoder',
13
+ 'T5EncoderModel',
14
+ 'HuggingfaceTokenizer',
15
+ 'flash_attention',
16
+ ]
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (678 Bytes). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/attention.cpython-312.pyc ADDED
Binary file (10.8 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/clip.cpython-312.pyc ADDED
Binary file (24 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/model.cpython-312.pyc ADDED
Binary file (46.1 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/t5.cpython-312.pyc ADDED
Binary file (27.3 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/tokenizers.cpython-312.pyc ADDED
Binary file (4.12 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/vae.cpython-312.pyc ADDED
Binary file (37.4 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/__pycache__/xlm_roberta.cpython-312.pyc ADDED
Binary file (8.05 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/attention.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from typing import Optional
3
+ import torch
4
+
5
+ try:
6
+ import flash_attn_interface
7
+
8
+ FLASH_ATTN_3_AVAILABLE = True
9
+ except ModuleNotFoundError:
10
+ FLASH_ATTN_3_AVAILABLE = False
11
+
12
+ try:
13
+ import flash_attn
14
+
15
+ FLASH_ATTN_2_AVAILABLE = True
16
+ except ModuleNotFoundError:
17
+ FLASH_ATTN_2_AVAILABLE = False
18
+
19
+ try:
20
+ import sageattention
21
+
22
+ SAGE_ATTN_AVAILABLE = True
23
+ except ModuleNotFoundError:
24
+ SAGE_ATTN_AVAILABLE = False
25
+
26
+ try:
27
+ import xformers.ops as xops
28
+
29
+ XFORMERS_AVAILABLE = True
30
+ except ImportError:
31
+ XFORMERS_AVAILABLE = False
32
+
33
+
34
+ import warnings
35
+
36
+ __all__ = [
37
+ "flash_attention",
38
+ "attention",
39
+ ]
40
+
41
+
42
+ def flash_attention(
43
+ qkv,
44
+ q_lens=None,
45
+ k_lens=None,
46
+ dropout_p=0.0,
47
+ softmax_scale=None,
48
+ q_scale=None,
49
+ causal=False,
50
+ window_size=(-1, -1),
51
+ deterministic=False,
52
+ dtype=torch.bfloat16,
53
+ version=None,
54
+ attn_mode: Optional[str] = "torch",
55
+ split_attn: bool = False,
56
+ ):
57
+ """
58
+ q: [B, Lq, Nq, C1].
59
+ k: [B, Lk, Nk, C1].
60
+ v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
61
+ q_lens: [B].
62
+ k_lens: [B].
63
+ dropout_p: float. Dropout probability.
64
+ softmax_scale: float. The scaling of QK^T before applying softmax.
65
+ causal: bool. Whether to apply causal attention mask.
66
+ window_size: (left right). If not (-1, -1), apply sliding window local attention.
67
+ deterministic: bool. If True, slightly slower and uses more memory.
68
+ dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
69
+ """
70
+ q, k, v = qkv
71
+ qkv.clear()
72
+
73
+ half_dtypes = (torch.float16, torch.bfloat16)
74
+ assert dtype in half_dtypes
75
+ # assert q.device.type == "cuda" and q.size(-1) <= 256
76
+
77
+ # params
78
+ b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
79
+
80
+ def half(x):
81
+ return x if x.dtype in half_dtypes else x.to(dtype)
82
+
83
+ # We cannot test Flash attention 3 in musubi tuner, so keep the original code.
84
+ # Customized code (except for flash attention 3) is not supported q_lens and k_lens.
85
+ if attn_mode != "flash3" and attn_mode != "sageattn":
86
+ assert q_lens is None, "q_lens is not supported except for flash attention 3."
87
+ assert k_lens is None or (
88
+ min(k_lens) == max(k_lens) and k_lens[0] == lk
89
+ ), f"k_lens is not supported except for flash attention 3 or sage attention. k_lens={k_lens}, lk={lk}."
90
+
91
+ # SDPA
92
+ if attn_mode == "torch" or attn_mode == "sdpa":
93
+ assert not deterministic, "deterministic is not supported in scaled_dot_product_attention."
94
+ if q_scale is not None:
95
+ q = q * q_scale
96
+ q = half(q.transpose(1, 2))
97
+ k = half(k.transpose(1, 2))
98
+ v = half(v.transpose(1, 2))
99
+
100
+ if not split_attn:
101
+ q = torch.nn.functional.scaled_dot_product_attention(
102
+ q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
103
+ )
104
+ x = q
105
+ else:
106
+ x = torch.empty_like(q)
107
+ for i in range(q.size(0)):
108
+ x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention(
109
+ q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
110
+ )
111
+
112
+ del q, k, v
113
+ x = x.transpose(1, 2).contiguous()
114
+ return x.type(out_dtype)
115
+
116
+ # flash attention 2
117
+ if attn_mode == "flash" or attn_mode == "flash2":
118
+ if q_scale is not None:
119
+ q = q * q_scale
120
+ q = half(q)
121
+ k = half(k)
122
+ v = half(v)
123
+
124
+ if not split_attn:
125
+ q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic)
126
+ x = q
127
+ else:
128
+ x = torch.empty_like(q)
129
+ for i in range(q.size(0)):
130
+ x[i : i + 1] = flash_attn.flash_attn_func(
131
+ q[i : i + 1],
132
+ k[i : i + 1],
133
+ v[i : i + 1],
134
+ dropout_p,
135
+ softmax_scale,
136
+ causal,
137
+ window_size,
138
+ deterministic=deterministic,
139
+ )
140
+ del q, k, v
141
+ return x.type(out_dtype)
142
+
143
+ # xformers
144
+ if attn_mode == "xformers":
145
+ assert not deterministic, "deterministic is not supported in xformers."
146
+ assert not causal, "causal is not supported in xformers."
147
+ if q_scale is not None:
148
+ q = q * q_scale
149
+ q = half(q)
150
+ k = half(k)
151
+ v = half(v)
152
+
153
+ if not split_attn:
154
+ q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale)
155
+ x = q
156
+ else:
157
+ x = torch.empty_like(q)
158
+ for i in range(q.size(0)):
159
+ x[i : i + 1] = xops.memory_efficient_attention(
160
+ q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale
161
+ )
162
+
163
+ del q, k, v
164
+ return x.type(out_dtype)
165
+
166
+ # sage attention with fixed length seems to cause NaN in I2V inference.
167
+ # # sage attention
168
+ # if attn_mode == "sageattn":
169
+ # print("Using sage attention")
170
+ # assert not deterministic, "deterministic is not supported in sage attention."
171
+ # if q_scale is not None:
172
+ # q = q * q_scale
173
+ # q, k, v = half(q), half(k), half(v)
174
+ # x = sageattention.sageattn(q, k, v, "NHD", is_causal=causal, sm_scale=softmax_scale)
175
+ # del q, k, v
176
+ # return x.type(out_dtype)
177
+
178
+ assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention."
179
+
180
+ # preprocess query: in Wan 2.1, q_lens is always None.
181
+ if q_lens is None:
182
+ q = half(q.flatten(0, 1))
183
+ q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
184
+ else:
185
+ q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
186
+
187
+ # preprocess key, value
188
+ if k_lens is None:
189
+ k = half(k.flatten(0, 1))
190
+ v = half(v.flatten(0, 1))
191
+ k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True)
192
+ else:
193
+ # Note: in Wan 2.1, all k_lens are same if we have same image size in the batch.
194
+ if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]:
195
+ # B, L, N, C -> BN, L, C
196
+ k = half(k.flatten(0, 1))
197
+ v = half(v.flatten(0, 1))
198
+ else:
199
+ k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
200
+ v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
201
+
202
+ q = q.to(v.dtype)
203
+ k = k.to(v.dtype)
204
+
205
+ if q_scale is not None:
206
+ q = q * q_scale
207
+
208
+ # if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
209
+ # warnings.warn("Flash attention 3 is not available, use flash attention 2 instead.")
210
+
211
+ # apply attention
212
+ # if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
213
+ if attn_mode == "flash3":
214
+ # Not tested yet in musubi tuner.
215
+ # Note: dropout_p, window_size are not supported in FA3 now.
216
+ x = flash_attn_interface.flash_attn_varlen_func(
217
+ q=q,
218
+ k=k,
219
+ v=v,
220
+ cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
221
+ cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
222
+ seqused_q=None,
223
+ seqused_k=None,
224
+ max_seqlen_q=lq,
225
+ max_seqlen_k=lk,
226
+ softmax_scale=softmax_scale,
227
+ causal=causal,
228
+ deterministic=deterministic,
229
+ )[0].unflatten(0, (b, lq))
230
+ # elif (version is None or version == 2) and FLASH_ATTN_2_AVAILABLE:
231
+ # # assert FLASH_ATTN_2_AVAILABLE
232
+ # x = flash_attn.flash_attn_varlen_func(
233
+ # q=q,
234
+ # k=k,
235
+ # v=v,
236
+ # cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
237
+ # cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
238
+ # max_seqlen_q=lq,
239
+ # max_seqlen_k=lk,
240
+ # dropout_p=dropout_p,
241
+ # softmax_scale=softmax_scale,
242
+ # causal=causal,
243
+ # window_size=window_size,
244
+ # deterministic=deterministic,
245
+ # ).unflatten(0, (b, lq))
246
+ # elif version is None and SAGE_ATTN_AVAILABLE:
247
+ elif attn_mode == "sageattn":
248
+ # print("Using sage attention")
249
+ assert not causal, "SAGE attention does not support causal attention."
250
+ x = sageattention.sageattn_varlen(
251
+ q=q,
252
+ k=k,
253
+ v=v,
254
+ cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
255
+ cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
256
+ max_seqlen_q=lq,
257
+ max_seqlen_k=lk,
258
+ sm_scale=softmax_scale,
259
+ ).unflatten(0, (b, lq))
260
+ else:
261
+ raise ValueError(f"Unknown attention mode: {attn_mode}")
262
+
263
+ # output
264
+ return x.type(out_dtype)
265
+
266
+
267
+ def attention(
268
+ q,
269
+ k,
270
+ v,
271
+ q_lens=None,
272
+ k_lens=None,
273
+ dropout_p=0.0,
274
+ softmax_scale=None,
275
+ q_scale=None,
276
+ causal=False,
277
+ window_size=(-1, -1),
278
+ deterministic=False,
279
+ dtype=torch.bfloat16,
280
+ fa_version=None,
281
+ ):
282
+ if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
283
+ return flash_attention(
284
+ q=q,
285
+ k=k,
286
+ v=v,
287
+ q_lens=q_lens,
288
+ k_lens=k_lens,
289
+ dropout_p=dropout_p,
290
+ softmax_scale=softmax_scale,
291
+ q_scale=q_scale,
292
+ causal=causal,
293
+ window_size=window_size,
294
+ deterministic=deterministic,
295
+ dtype=dtype,
296
+ version=fa_version,
297
+ )
298
+ else:
299
+ if q_lens is not None or k_lens is not None:
300
+ warnings.warn(
301
+ "Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance."
302
+ )
303
+ attn_mask = None
304
+
305
+ q = q.transpose(1, 2).to(dtype)
306
+ k = k.transpose(1, 2).to(dtype)
307
+ v = v.transpose(1, 2).to(dtype)
308
+
309
+ out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
310
+
311
+ out = out.transpose(1, 2).contiguous()
312
+ return out
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/clip.py ADDED
@@ -0,0 +1,546 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
2
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
3
+ import logging
4
+ import math
5
+ import os
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import torchvision.transforms as T
11
+ from accelerate import init_empty_weights
12
+
13
+ from musubi_tuner.wan.modules.attention import flash_attention
14
+ from musubi_tuner.wan.modules.tokenizers import HuggingfaceTokenizer
15
+ from musubi_tuner.wan.modules.xlm_roberta import XLMRoberta
16
+
17
+ from musubi_tuner.utils.safetensors_utils import load_safetensors
18
+
19
+ __all__ = [
20
+ "XLMRobertaCLIP",
21
+ "clip_xlm_roberta_vit_h_14",
22
+ "CLIPModel",
23
+ ]
24
+
25
+
26
+ def pos_interpolate(pos, seq_len):
27
+ if pos.size(1) == seq_len:
28
+ return pos
29
+ else:
30
+ src_grid = int(math.sqrt(pos.size(1)))
31
+ tar_grid = int(math.sqrt(seq_len))
32
+ n = pos.size(1) - src_grid * src_grid
33
+ return torch.cat(
34
+ [
35
+ pos[:, :n],
36
+ F.interpolate(
37
+ pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(0, 3, 1, 2),
38
+ size=(tar_grid, tar_grid),
39
+ mode="bicubic",
40
+ align_corners=False,
41
+ )
42
+ .flatten(2)
43
+ .transpose(1, 2),
44
+ ],
45
+ dim=1,
46
+ )
47
+
48
+
49
+ class QuickGELU(nn.Module):
50
+
51
+ def forward(self, x):
52
+ return x * torch.sigmoid(1.702 * x)
53
+
54
+
55
+ class LayerNorm(nn.LayerNorm):
56
+
57
+ def forward(self, x):
58
+ return super().forward(x.float()).type_as(x)
59
+
60
+
61
+ class SelfAttention(nn.Module):
62
+
63
+ def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0):
64
+ assert dim % num_heads == 0
65
+ super().__init__()
66
+ self.dim = dim
67
+ self.num_heads = num_heads
68
+ self.head_dim = dim // num_heads
69
+ self.causal = causal
70
+ self.attn_dropout = attn_dropout
71
+ self.proj_dropout = proj_dropout
72
+
73
+ # layers
74
+ self.to_qkv = nn.Linear(dim, dim * 3)
75
+ self.proj = nn.Linear(dim, dim)
76
+
77
+ def forward(self, x):
78
+ """
79
+ x: [B, L, C].
80
+ """
81
+ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
82
+
83
+ # compute query, key, value
84
+ q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)
85
+
86
+ # compute attention
87
+ p = self.attn_dropout if self.training else 0.0
88
+ # x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
89
+ # print(q.shape, k.shape, v.shape)
90
+ q = q.transpose(1, 2)
91
+ k = k.transpose(1, 2)
92
+ v = v.transpose(1, 2)
93
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=p, is_causal=self.causal)
94
+ # print(x.shape)
95
+ x = x.transpose(1, 2).contiguous()
96
+ x = x.reshape(b, s, c)
97
+
98
+ # output
99
+ x = self.proj(x)
100
+ x = F.dropout(x, self.proj_dropout, self.training)
101
+ return x
102
+
103
+
104
+ class SwiGLU(nn.Module):
105
+
106
+ def __init__(self, dim, mid_dim):
107
+ super().__init__()
108
+ self.dim = dim
109
+ self.mid_dim = mid_dim
110
+
111
+ # layers
112
+ self.fc1 = nn.Linear(dim, mid_dim)
113
+ self.fc2 = nn.Linear(dim, mid_dim)
114
+ self.fc3 = nn.Linear(mid_dim, dim)
115
+
116
+ def forward(self, x):
117
+ x = F.silu(self.fc1(x)) * self.fc2(x)
118
+ x = self.fc3(x)
119
+ return x
120
+
121
+
122
+ class AttentionBlock(nn.Module):
123
+
124
+ def __init__(
125
+ self,
126
+ dim,
127
+ mlp_ratio,
128
+ num_heads,
129
+ post_norm=False,
130
+ causal=False,
131
+ activation="quick_gelu",
132
+ attn_dropout=0.0,
133
+ proj_dropout=0.0,
134
+ norm_eps=1e-5,
135
+ ):
136
+ assert activation in ["quick_gelu", "gelu", "swi_glu"]
137
+ super().__init__()
138
+ self.dim = dim
139
+ self.mlp_ratio = mlp_ratio
140
+ self.num_heads = num_heads
141
+ self.post_norm = post_norm
142
+ self.causal = causal
143
+ self.norm_eps = norm_eps
144
+
145
+ # layers
146
+ self.norm1 = LayerNorm(dim, eps=norm_eps)
147
+ self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout)
148
+ self.norm2 = LayerNorm(dim, eps=norm_eps)
149
+ if activation == "swi_glu":
150
+ self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
151
+ else:
152
+ self.mlp = nn.Sequential(
153
+ nn.Linear(dim, int(dim * mlp_ratio)),
154
+ QuickGELU() if activation == "quick_gelu" else nn.GELU(),
155
+ nn.Linear(int(dim * mlp_ratio), dim),
156
+ nn.Dropout(proj_dropout),
157
+ )
158
+
159
+ def forward(self, x):
160
+ if self.post_norm:
161
+ x = x + self.norm1(self.attn(x))
162
+ x = x + self.norm2(self.mlp(x))
163
+ else:
164
+ x = x + self.attn(self.norm1(x))
165
+ x = x + self.mlp(self.norm2(x))
166
+ return x
167
+
168
+
169
+ class AttentionPool(nn.Module):
170
+
171
+ def __init__(self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5):
172
+ assert dim % num_heads == 0
173
+ super().__init__()
174
+ self.dim = dim
175
+ self.mlp_ratio = mlp_ratio
176
+ self.num_heads = num_heads
177
+ self.head_dim = dim // num_heads
178
+ self.proj_dropout = proj_dropout
179
+ self.norm_eps = norm_eps
180
+
181
+ # layers
182
+ gain = 1.0 / math.sqrt(dim)
183
+ self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
184
+ self.to_q = nn.Linear(dim, dim)
185
+ self.to_kv = nn.Linear(dim, dim * 2)
186
+ self.proj = nn.Linear(dim, dim)
187
+ self.norm = LayerNorm(dim, eps=norm_eps)
188
+ self.mlp = nn.Sequential(
189
+ nn.Linear(dim, int(dim * mlp_ratio)),
190
+ QuickGELU() if activation == "quick_gelu" else nn.GELU(),
191
+ nn.Linear(int(dim * mlp_ratio), dim),
192
+ nn.Dropout(proj_dropout),
193
+ )
194
+
195
+ def forward(self, x):
196
+ """
197
+ x: [B, L, C].
198
+ """
199
+ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
200
+
201
+ # compute query, key, value
202
+ q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
203
+ k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)
204
+
205
+ # compute attention
206
+ # this line is never used because pool_type="token" in Wan2.1
207
+ x = flash_attention(q, k, v, version=2)
208
+ x = x.reshape(b, 1, c)
209
+
210
+ # output
211
+ x = self.proj(x)
212
+ x = F.dropout(x, self.proj_dropout, self.training)
213
+
214
+ # mlp
215
+ x = x + self.mlp(self.norm(x))
216
+ return x[:, 0]
217
+
218
+
219
+ class VisionTransformer(nn.Module):
220
+
221
+ def __init__(
222
+ self,
223
+ image_size=224,
224
+ patch_size=16,
225
+ dim=768,
226
+ mlp_ratio=4,
227
+ out_dim=512,
228
+ num_heads=12,
229
+ num_layers=12,
230
+ pool_type="token",
231
+ pre_norm=True,
232
+ post_norm=False,
233
+ activation="quick_gelu",
234
+ attn_dropout=0.0,
235
+ proj_dropout=0.0,
236
+ embedding_dropout=0.0,
237
+ norm_eps=1e-5,
238
+ ):
239
+ if image_size % patch_size != 0:
240
+ print("[WARNING] image_size is not divisible by patch_size", flush=True)
241
+ assert pool_type in ("token", "token_fc", "attn_pool")
242
+ out_dim = out_dim or dim
243
+ super().__init__()
244
+ self.image_size = image_size
245
+ self.patch_size = patch_size
246
+ self.num_patches = (image_size // patch_size) ** 2
247
+ self.dim = dim
248
+ self.mlp_ratio = mlp_ratio
249
+ self.out_dim = out_dim
250
+ self.num_heads = num_heads
251
+ self.num_layers = num_layers
252
+ self.pool_type = pool_type
253
+ self.post_norm = post_norm
254
+ self.norm_eps = norm_eps
255
+
256
+ # embeddings
257
+ gain = 1.0 / math.sqrt(dim)
258
+ self.patch_embedding = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm)
259
+ if pool_type in ("token", "token_fc"):
260
+ self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
261
+ self.pos_embedding = nn.Parameter(
262
+ gain * torch.randn(1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim)
263
+ )
264
+ self.dropout = nn.Dropout(embedding_dropout)
265
+
266
+ # transformer
267
+ self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
268
+ self.transformer = nn.Sequential(
269
+ *[
270
+ AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps)
271
+ for _ in range(num_layers)
272
+ ]
273
+ )
274
+ self.post_norm = LayerNorm(dim, eps=norm_eps)
275
+
276
+ # head
277
+ if pool_type == "token":
278
+ self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
279
+ elif pool_type == "token_fc":
280
+ self.head = nn.Linear(dim, out_dim)
281
+ elif pool_type == "attn_pool":
282
+ self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps)
283
+
284
+ def forward(self, x, interpolation=False, use_31_block=False):
285
+ b = x.size(0)
286
+
287
+ # embeddings
288
+ x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
289
+ if self.pool_type in ("token", "token_fc"):
290
+ x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
291
+ if interpolation:
292
+ e = pos_interpolate(self.pos_embedding, x.size(1))
293
+ else:
294
+ e = self.pos_embedding
295
+ x = self.dropout(x + e)
296
+ if self.pre_norm is not None:
297
+ x = self.pre_norm(x)
298
+
299
+ # transformer
300
+ if use_31_block:
301
+ x = self.transformer[:-1](x)
302
+ return x
303
+ else:
304
+ x = self.transformer(x)
305
+ return x
306
+
307
+
308
+ class XLMRobertaWithHead(XLMRoberta):
309
+
310
+ def __init__(self, **kwargs):
311
+ self.out_dim = kwargs.pop("out_dim")
312
+ super().__init__(**kwargs)
313
+
314
+ # head
315
+ mid_dim = (self.dim + self.out_dim) // 2
316
+ self.head = nn.Sequential(nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), nn.Linear(mid_dim, self.out_dim, bias=False))
317
+
318
+ def forward(self, ids):
319
+ # xlm-roberta
320
+ x = super().forward(ids)
321
+
322
+ # average pooling
323
+ mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
324
+ x = (x * mask).sum(dim=1) / mask.sum(dim=1)
325
+
326
+ # head
327
+ x = self.head(x)
328
+ return x
329
+
330
+
331
+ class XLMRobertaCLIP(nn.Module):
332
+
333
+ def __init__(
334
+ self,
335
+ embed_dim=1024,
336
+ image_size=224,
337
+ patch_size=14,
338
+ vision_dim=1280,
339
+ vision_mlp_ratio=4,
340
+ vision_heads=16,
341
+ vision_layers=32,
342
+ vision_pool="token",
343
+ vision_pre_norm=True,
344
+ vision_post_norm=False,
345
+ activation="gelu",
346
+ vocab_size=250002,
347
+ max_text_len=514,
348
+ type_size=1,
349
+ pad_id=1,
350
+ text_dim=1024,
351
+ text_heads=16,
352
+ text_layers=24,
353
+ text_post_norm=True,
354
+ text_dropout=0.1,
355
+ attn_dropout=0.0,
356
+ proj_dropout=0.0,
357
+ embedding_dropout=0.0,
358
+ norm_eps=1e-5,
359
+ ):
360
+ super().__init__()
361
+ self.embed_dim = embed_dim
362
+ self.image_size = image_size
363
+ self.patch_size = patch_size
364
+ self.vision_dim = vision_dim
365
+ self.vision_mlp_ratio = vision_mlp_ratio
366
+ self.vision_heads = vision_heads
367
+ self.vision_layers = vision_layers
368
+ self.vision_pre_norm = vision_pre_norm
369
+ self.vision_post_norm = vision_post_norm
370
+ self.activation = activation
371
+ self.vocab_size = vocab_size
372
+ self.max_text_len = max_text_len
373
+ self.type_size = type_size
374
+ self.pad_id = pad_id
375
+ self.text_dim = text_dim
376
+ self.text_heads = text_heads
377
+ self.text_layers = text_layers
378
+ self.text_post_norm = text_post_norm
379
+ self.norm_eps = norm_eps
380
+
381
+ # models
382
+ self.visual = VisionTransformer(
383
+ image_size=image_size,
384
+ patch_size=patch_size,
385
+ dim=vision_dim,
386
+ mlp_ratio=vision_mlp_ratio,
387
+ out_dim=embed_dim,
388
+ num_heads=vision_heads,
389
+ num_layers=vision_layers,
390
+ pool_type=vision_pool,
391
+ pre_norm=vision_pre_norm,
392
+ post_norm=vision_post_norm,
393
+ activation=activation,
394
+ attn_dropout=attn_dropout,
395
+ proj_dropout=proj_dropout,
396
+ embedding_dropout=embedding_dropout,
397
+ norm_eps=norm_eps,
398
+ )
399
+ self.textual = XLMRobertaWithHead(
400
+ vocab_size=vocab_size,
401
+ max_seq_len=max_text_len,
402
+ type_size=type_size,
403
+ pad_id=pad_id,
404
+ dim=text_dim,
405
+ out_dim=embed_dim,
406
+ num_heads=text_heads,
407
+ num_layers=text_layers,
408
+ post_norm=text_post_norm,
409
+ dropout=text_dropout,
410
+ )
411
+ self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
412
+
413
+ def forward(self, imgs, txt_ids):
414
+ """
415
+ imgs: [B, 3, H, W] of torch.float32.
416
+ - mean: [0.48145466, 0.4578275, 0.40821073]
417
+ - std: [0.26862954, 0.26130258, 0.27577711]
418
+ txt_ids: [B, L] of torch.long.
419
+ Encoded by data.CLIPTokenizer.
420
+ """
421
+ xi = self.visual(imgs)
422
+ xt = self.textual(txt_ids)
423
+ return xi, xt
424
+
425
+ def param_groups(self):
426
+ groups = [
427
+ {"params": [p for n, p in self.named_parameters() if "norm" in n or n.endswith("bias")], "weight_decay": 0.0},
428
+ {"params": [p for n, p in self.named_parameters() if not ("norm" in n or n.endswith("bias"))]},
429
+ ]
430
+ return groups
431
+
432
+
433
+ def _clip(
434
+ pretrained=False,
435
+ pretrained_name=None,
436
+ model_cls=XLMRobertaCLIP,
437
+ return_transforms=False,
438
+ return_tokenizer=False,
439
+ tokenizer_padding="eos",
440
+ dtype=torch.float32,
441
+ device="cpu",
442
+ **kwargs,
443
+ ):
444
+ # # init a model on device
445
+ # with torch.device(device):
446
+ model = model_cls(**kwargs)
447
+
448
+ # # set device
449
+ # model = model.to(dtype=dtype, device=device)
450
+ output = (model,)
451
+
452
+ # init transforms
453
+ if return_transforms:
454
+ # mean and std
455
+ if "siglip" in pretrained_name.lower():
456
+ mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
457
+ else:
458
+ mean = [0.48145466, 0.4578275, 0.40821073]
459
+ std = [0.26862954, 0.26130258, 0.27577711]
460
+
461
+ # transforms
462
+ transforms = T.Compose(
463
+ [
464
+ T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC),
465
+ T.ToTensor(),
466
+ T.Normalize(mean=mean, std=std),
467
+ ]
468
+ )
469
+ output += (transforms,)
470
+ return output[0] if len(output) == 1 else output
471
+
472
+
473
+ def clip_xlm_roberta_vit_h_14(pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs):
474
+ cfg = dict(
475
+ embed_dim=1024,
476
+ image_size=224,
477
+ patch_size=14,
478
+ vision_dim=1280,
479
+ vision_mlp_ratio=4,
480
+ vision_heads=16,
481
+ vision_layers=32,
482
+ vision_pool="token",
483
+ activation="gelu",
484
+ vocab_size=250002,
485
+ max_text_len=514,
486
+ type_size=1,
487
+ pad_id=1,
488
+ text_dim=1024,
489
+ text_heads=16,
490
+ text_layers=24,
491
+ text_post_norm=True,
492
+ text_dropout=0.1,
493
+ attn_dropout=0.0,
494
+ proj_dropout=0.0,
495
+ embedding_dropout=0.0,
496
+ )
497
+ cfg.update(**kwargs)
498
+ return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)
499
+
500
+
501
+ class CLIPModel:
502
+
503
+ def __init__(self, dtype, device, checkpoint_path=None, tokenizer_path=None, weight_path=None):
504
+ self.dtype = dtype
505
+ self.device = device
506
+ self.checkpoint_path = checkpoint_path
507
+ self.tokenizer_path = tokenizer_path
508
+ self.weight_path = weight_path
509
+
510
+ # init model
511
+ with init_empty_weights():
512
+ self.model, self.transforms = clip_xlm_roberta_vit_h_14(
513
+ pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device
514
+ )
515
+ self.model = self.model.eval().requires_grad_(False)
516
+
517
+ logging.info(f"loading {weight_path}")
518
+ if os.path.splitext(weight_path)[-1] == ".safetensors":
519
+ sd = load_safetensors(weight_path, device=device, disable_mmap=True, dtype=dtype)
520
+ else:
521
+ sd = torch.load(weight_path, map_location=device, weights_only=True)
522
+ info = self.model.load_state_dict(sd, strict=True, assign=True)
523
+ self.model = self.model.to(dtype=dtype, device=device)
524
+ logging.info(f"weights loaded from {weight_path}: {info}")
525
+
526
+ # init tokenizer
527
+ if tokenizer_path is None:
528
+ tokenizer_path = "Wan-AI/Wan2.1-I2V-14B-720P"
529
+ subfolder = "xlm-roberta-large"
530
+ else:
531
+ subfolder = None
532
+
533
+ self.tokenizer = HuggingfaceTokenizer(
534
+ name=tokenizer_path, seq_len=self.model.max_text_len - 2, clean="whitespace", subfolder=subfolder
535
+ )
536
+
537
+ def visual(self, videos):
538
+ # preprocess
539
+ size = (self.model.image_size,) * 2
540
+ videos = torch.cat([F.interpolate(u.transpose(0, 1), size=size, mode="bicubic", align_corners=False) for u in videos])
541
+ videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
542
+
543
+ # forward
544
+ # with torch.cuda.amp.autocast(dtype=self.dtype):
545
+ out = self.model.visual(videos, use_31_block=True)
546
+ return out
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/model.py ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import math
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.utils.checkpoint import checkpoint
8
+ from accelerate import init_empty_weights
9
+
10
+ import logging
11
+
12
+ from musubi_tuner.utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors
13
+
14
+ logger = logging.getLogger(__name__)
15
+ logging.basicConfig(level=logging.INFO)
16
+
17
+ from musubi_tuner.utils.device_utils import clean_memory_on_device
18
+
19
+ from musubi_tuner.wan.modules.attention import flash_attention
20
+ from musubi_tuner.utils.device_utils import clean_memory_on_device
21
+ from musubi_tuner.modules.custom_offloading_utils import ModelOffloader
22
+ from musubi_tuner.modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8
23
+
24
+ __all__ = ["WanModel"]
25
+
26
+
27
+ def sinusoidal_embedding_1d(dim, position):
28
+ # preprocess
29
+ assert dim % 2 == 0
30
+ half = dim // 2
31
+ position = position.type(torch.float64)
32
+
33
+ # calculation
34
+ sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
35
+ x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
36
+ return x
37
+
38
+
39
+ # @amp.autocast(enabled=False)
40
+ # no autocast is needed for rope_apply, because it is already in float64
41
+ def rope_params(max_seq_len, dim, theta=10000):
42
+ assert dim % 2 == 0
43
+ freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)))
44
+ freqs = torch.polar(torch.ones_like(freqs), freqs)
45
+ return freqs
46
+
47
+
48
+ # @amp.autocast(enabled=False)
49
+ def rope_apply(x, grid_sizes, freqs):
50
+ device_type = x.device.type
51
+ with torch.amp.autocast(device_type=device_type, enabled=False):
52
+ n, c = x.size(2), x.size(3) // 2
53
+
54
+ # split freqs
55
+ freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
56
+
57
+ # loop over samples
58
+ output = []
59
+ for i, (f, h, w) in enumerate(grid_sizes.tolist()):
60
+ seq_len = f * h * w
61
+
62
+ # precompute multipliers
63
+ x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2))
64
+ freqs_i = torch.cat(
65
+ [
66
+ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
67
+ freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
68
+ freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
69
+ ],
70
+ dim=-1,
71
+ ).reshape(seq_len, 1, -1)
72
+
73
+ # apply rotary embedding
74
+ x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
75
+ x_i = torch.cat([x_i, x[i, seq_len:]])
76
+
77
+ # append to collection
78
+ output.append(x_i)
79
+ return torch.stack(output).float()
80
+
81
+
82
+ def calculate_freqs_i(fhw, c, freqs, f_indices=None):
83
+ """f_indices is used to select specific frames for rotary embedding. e.g. [0,8] (with start image) or [0,8,20] (with start and end images)"""
84
+ f, h, w = fhw[:3]
85
+ freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
86
+
87
+ if f_indices is None:
88
+ freqs_f = freqs[0][:f]
89
+ else:
90
+ logger.info(f"Using f_indices: {f_indices} for rotary embedding. fhw: {fhw}")
91
+ freqs_f = freqs[0][f_indices]
92
+
93
+ freqs_i = torch.cat(
94
+ [
95
+ freqs_f.view(f, 1, 1, -1).expand(f, h, w, -1),
96
+ freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
97
+ freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
98
+ ],
99
+ dim=-1,
100
+ ).reshape(f * h * w, 1, -1)
101
+ return freqs_i
102
+
103
+
104
+ # inplace version of rope_apply
105
+ def rope_apply_inplace_cached(x, grid_sizes, freqs_list):
106
+ # with torch.amp.autocast(device_type=device_type, enabled=False):
107
+ rope_dtype = torch.float64 # float32 does not reduce memory usage significantly
108
+
109
+ n, c = x.size(2), x.size(3) // 2
110
+
111
+ # loop over samples
112
+ for i, (f, h, w) in enumerate(grid_sizes.tolist()):
113
+ seq_len = f * h * w
114
+
115
+ # precompute multipliers
116
+ x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2))
117
+ freqs_i = freqs_list[i]
118
+
119
+ # apply rotary embedding
120
+ x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
121
+ # x_i = torch.cat([x_i, x[i, seq_len:]])
122
+
123
+ # inplace update
124
+ x[i, :seq_len] = x_i.to(x.dtype)
125
+
126
+ return x
127
+
128
+
129
+ class WanRMSNorm(nn.Module):
130
+
131
+ def __init__(self, dim, eps=1e-5):
132
+ super().__init__()
133
+ self.dim = dim
134
+ self.eps = eps
135
+ self.weight = nn.Parameter(torch.ones(dim))
136
+
137
+ def forward(self, x):
138
+ r"""
139
+ Args:
140
+ x(Tensor): Shape [B, L, C]
141
+ """
142
+ # return self._norm(x.float()).type_as(x) * self.weight
143
+ # support fp8
144
+ return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype)
145
+
146
+ def _norm(self, x):
147
+ return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
148
+
149
+ # def forward(self, x):
150
+ # r"""
151
+ # Args:
152
+ # x(Tensor): Shape [B, L, C]
153
+ # """
154
+ # # inplace version, also supports fp8 -> does not have significant performance improvement
155
+ # original_dtype = x.dtype
156
+ # x = x.float()
157
+ # y = x.pow(2).mean(dim=-1, keepdim=True)
158
+ # y.add_(self.eps)
159
+ # y.rsqrt_()
160
+ # x *= y
161
+ # x = x.to(original_dtype)
162
+ # x *= self.weight.to(original_dtype)
163
+ # return x
164
+
165
+
166
+ class WanLayerNorm(nn.LayerNorm):
167
+
168
+ def __init__(self, dim, eps=1e-6, elementwise_affine=False):
169
+ super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
170
+
171
+ def forward(self, x):
172
+ r"""
173
+ Args:
174
+ x(Tensor): Shape [B, L, C]
175
+ """
176
+ return super().forward(x.float()).type_as(x)
177
+
178
+
179
+ class WanSelfAttention(nn.Module):
180
+
181
+ def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
182
+ assert dim % num_heads == 0
183
+ super().__init__()
184
+ self.dim = dim
185
+ self.num_heads = num_heads
186
+ self.head_dim = dim // num_heads
187
+ self.window_size = window_size
188
+ self.qk_norm = qk_norm
189
+ self.eps = eps
190
+ self.attn_mode = attn_mode
191
+ self.split_attn = split_attn
192
+
193
+ # layers
194
+ self.q = nn.Linear(dim, dim)
195
+ self.k = nn.Linear(dim, dim)
196
+ self.v = nn.Linear(dim, dim)
197
+ self.o = nn.Linear(dim, dim)
198
+ self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
199
+ self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
200
+
201
+ def forward(self, x, seq_lens, grid_sizes, freqs):
202
+ r"""
203
+ Args:
204
+ x(Tensor): Shape [B, L, num_heads, C / num_heads]
205
+ seq_lens(Tensor): Shape [B]
206
+ grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
207
+ freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
208
+ """
209
+ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
210
+
211
+ # # query, key, value function
212
+ # def qkv_fn(x):
213
+ # q = self.norm_q(self.q(x)).view(b, s, n, d)
214
+ # k = self.norm_k(self.k(x)).view(b, s, n, d)
215
+ # v = self.v(x).view(b, s, n, d)
216
+ # return q, k, v
217
+ # q, k, v = qkv_fn(x)
218
+ # del x
219
+ # query, key, value function
220
+
221
+ q = self.q(x)
222
+ k = self.k(x)
223
+ v = self.v(x)
224
+ del x
225
+ q = self.norm_q(q)
226
+ k = self.norm_k(k)
227
+ q = q.view(b, s, n, d)
228
+ k = k.view(b, s, n, d)
229
+ v = v.view(b, s, n, d)
230
+
231
+ rope_apply_inplace_cached(q, grid_sizes, freqs)
232
+ rope_apply_inplace_cached(k, grid_sizes, freqs)
233
+ qkv = [q, k, v]
234
+ del q, k, v
235
+ x = flash_attention(
236
+ qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn
237
+ )
238
+
239
+ # output
240
+ x = x.flatten(2)
241
+ x = self.o(x)
242
+ return x
243
+
244
+
245
+ class WanT2VCrossAttention(WanSelfAttention):
246
+
247
+ def forward(self, x, context, context_lens):
248
+ r"""
249
+ Args:
250
+ x(Tensor): Shape [B, L1, C]
251
+ context(Tensor): Shape [B, L2, C]
252
+ context_lens(Tensor): Shape [B]
253
+ """
254
+ b, n, d = x.size(0), self.num_heads, self.head_dim
255
+
256
+ # compute query, key, value
257
+ # q = self.norm_q(self.q(x)).view(b, -1, n, d)
258
+ # k = self.norm_k(self.k(context)).view(b, -1, n, d)
259
+ # v = self.v(context).view(b, -1, n, d)
260
+ q = self.q(x)
261
+ del x
262
+ k = self.k(context)
263
+ v = self.v(context)
264
+ del context
265
+ q = self.norm_q(q)
266
+ k = self.norm_k(k)
267
+ q = q.view(b, -1, n, d)
268
+ k = k.view(b, -1, n, d)
269
+ v = v.view(b, -1, n, d)
270
+
271
+ # compute attention
272
+ qkv = [q, k, v]
273
+ del q, k, v
274
+ x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
275
+
276
+ # output
277
+ x = x.flatten(2)
278
+ x = self.o(x)
279
+ return x
280
+
281
+
282
+ class WanI2VCrossAttention(WanSelfAttention):
283
+
284
+ def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
285
+ super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
286
+
287
+ self.k_img = nn.Linear(dim, dim)
288
+ self.v_img = nn.Linear(dim, dim)
289
+ # self.alpha = nn.Parameter(torch.zeros((1, )))
290
+ self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
291
+
292
+ def forward(self, x, context, context_lens):
293
+ r"""
294
+ Args:
295
+ x(Tensor): Shape [B, L1, C]
296
+ context(Tensor): Shape [B, L2, C]
297
+ context_lens(Tensor): Shape [B]
298
+ """
299
+ context_img = context[:, :257]
300
+ context = context[:, 257:]
301
+ b, n, d = x.size(0), self.num_heads, self.head_dim
302
+
303
+ # compute query, key, value
304
+ q = self.q(x)
305
+ del x
306
+ q = self.norm_q(q)
307
+ q = q.view(b, -1, n, d)
308
+ k = self.k(context)
309
+ k = self.norm_k(k).view(b, -1, n, d)
310
+ v = self.v(context).view(b, -1, n, d)
311
+ del context
312
+
313
+ # compute attention
314
+ qkv = [q, k, v]
315
+ del k, v
316
+ x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
317
+
318
+ # compute query, key, value
319
+ k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
320
+ v_img = self.v_img(context_img).view(b, -1, n, d)
321
+ del context_img
322
+
323
+ # compute attention
324
+ qkv = [q, k_img, v_img]
325
+ del q, k_img, v_img
326
+ img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn)
327
+
328
+ # output
329
+ x = x.flatten(2)
330
+ img_x = img_x.flatten(2)
331
+ if self.training:
332
+ x = x + img_x # avoid inplace
333
+ else:
334
+ x += img_x
335
+ del img_x
336
+
337
+ x = self.o(x)
338
+ return x
339
+
340
+
341
+ WAN_CROSSATTENTION_CLASSES = {
342
+ "t2v_cross_attn": WanT2VCrossAttention,
343
+ "i2v_cross_attn": WanI2VCrossAttention,
344
+ }
345
+
346
+
347
+ class WanAttentionBlock(nn.Module):
348
+
349
+ def __init__(
350
+ self,
351
+ cross_attn_type,
352
+ dim,
353
+ ffn_dim,
354
+ num_heads,
355
+ window_size=(-1, -1),
356
+ qk_norm=True,
357
+ cross_attn_norm=False,
358
+ eps=1e-6,
359
+ attn_mode="torch",
360
+ split_attn=False,
361
+ ):
362
+ super().__init__()
363
+ self.dim = dim
364
+ self.ffn_dim = ffn_dim
365
+ self.num_heads = num_heads
366
+ self.window_size = window_size
367
+ self.qk_norm = qk_norm
368
+ self.cross_attn_norm = cross_attn_norm
369
+ self.eps = eps
370
+
371
+ # layers
372
+ self.norm1 = WanLayerNorm(dim, eps)
373
+ self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
374
+ self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
375
+ self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn)
376
+ self.norm2 = WanLayerNorm(dim, eps)
377
+ self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))
378
+
379
+ # modulation
380
+ self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
381
+
382
+ self.gradient_checkpointing = False
383
+
384
+ def enable_gradient_checkpointing(self):
385
+ self.gradient_checkpointing = True
386
+
387
+ def disable_gradient_checkpointing(self):
388
+ self.gradient_checkpointing = False
389
+
390
+ def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
391
+ r"""
392
+ Args:
393
+ x(Tensor): Shape [B, L, C]
394
+ e(Tensor): Shape [B, 6, C]
395
+ seq_lens(Tensor): Shape [B], length of each sequence in batch
396
+ grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
397
+ freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
398
+ """
399
+ assert e.dtype == torch.float32
400
+ # with amp.autocast(dtype=torch.float32):
401
+ # e = (self.modulation + e).chunk(6, dim=1)
402
+ # support fp8
403
+ e = self.modulation.to(torch.float32) + e
404
+ e = e.chunk(6, dim=1)
405
+ assert e[0].dtype == torch.float32
406
+
407
+ # self-attention
408
+ y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs)
409
+ # with amp.autocast(dtype=torch.float32):
410
+ # x = x + y * e[2]
411
+ x = x + y.to(torch.float32) * e[2]
412
+ del y
413
+
414
+ # cross-attention & ffn function
415
+ # def cross_attn_ffn(x, context, context_lens, e):
416
+ # x += self.cross_attn(self.norm3(x), context, context_lens)
417
+ # y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
418
+ # # with amp.autocast(dtype=torch.float32):
419
+ # # x = x + y * e[5]
420
+ # x += y.to(torch.float32) * e[5]
421
+ # return x
422
+ # x = cross_attn_ffn(x, context, context_lens, e)
423
+
424
+ # x += self.cross_attn(self.norm3(x), context, context_lens) # backward error
425
+ x = x + self.cross_attn(self.norm3(x), context, context_lens)
426
+ del context
427
+ y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
428
+ x = x + y.to(torch.float32) * e[5]
429
+ del y
430
+ return x
431
+
432
+ def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
433
+ if self.training and self.gradient_checkpointing:
434
+ return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False)
435
+ return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens)
436
+
437
+
438
+ class Head(nn.Module):
439
+
440
+ def __init__(self, dim, out_dim, patch_size, eps=1e-6):
441
+ super().__init__()
442
+ self.dim = dim
443
+ self.out_dim = out_dim
444
+ self.patch_size = patch_size
445
+ self.eps = eps
446
+
447
+ # layers
448
+ out_dim = math.prod(patch_size) * out_dim
449
+ self.norm = WanLayerNorm(dim, eps)
450
+ self.head = nn.Linear(dim, out_dim)
451
+
452
+ # modulation
453
+ self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
454
+
455
+ def forward(self, x, e):
456
+ r"""
457
+ Args:
458
+ x(Tensor): Shape [B, L1, C]
459
+ e(Tensor): Shape [B, C]
460
+ """
461
+ assert e.dtype == torch.float32
462
+ # with amp.autocast(dtype=torch.float32):
463
+ # e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
464
+ # x = self.head(self.norm(x) * (1 + e[1]) + e[0])
465
+ # support fp8
466
+ e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1)
467
+ x = self.head(self.norm(x) * (1 + e[1]) + e[0])
468
+ return x
469
+
470
+
471
+ FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER = 257 * 2
472
+
473
+
474
+ class MLPProj(torch.nn.Module):
475
+
476
+ def __init__(self, in_dim, out_dim, flf_pos_emb=False):
477
+ super().__init__()
478
+
479
+ self.proj = torch.nn.Sequential(
480
+ torch.nn.LayerNorm(in_dim),
481
+ torch.nn.Linear(in_dim, in_dim),
482
+ torch.nn.GELU(),
483
+ torch.nn.Linear(in_dim, out_dim),
484
+ torch.nn.LayerNorm(out_dim),
485
+ )
486
+ if flf_pos_emb: # NOTE: we only use this for `flf2v`
487
+ self.emb_pos = nn.Parameter(torch.zeros(1, FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER, 1280))
488
+ else:
489
+ self.emb_pos = None
490
+
491
+ def forward(self, image_embeds):
492
+ if self.emb_pos is not None: # for `flf2v`
493
+ bs, n, d = image_embeds.shape
494
+ image_embeds = image_embeds.view(-1, 2 * n, d)
495
+ image_embeds = image_embeds + self.emb_pos
496
+ clip_extra_context_tokens = self.proj(image_embeds)
497
+ return clip_extra_context_tokens
498
+
499
+
500
+ class WanModel(nn.Module): # ModelMixin, ConfigMixin):
501
+ r"""
502
+ Wan diffusion backbone supporting both text-to-video and image-to-video.
503
+ """
504
+
505
+ ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
506
+ _no_split_modules = ["WanAttentionBlock"]
507
+
508
+ # @register_to_config
509
+ def __init__(
510
+ self,
511
+ model_type="t2v",
512
+ patch_size=(1, 2, 2),
513
+ text_len=512,
514
+ in_dim=16,
515
+ dim=2048,
516
+ ffn_dim=8192,
517
+ freq_dim=256,
518
+ text_dim=4096,
519
+ out_dim=16,
520
+ num_heads=16,
521
+ num_layers=32,
522
+ window_size=(-1, -1),
523
+ qk_norm=True,
524
+ cross_attn_norm=True,
525
+ eps=1e-6,
526
+ attn_mode=None,
527
+ split_attn=False,
528
+ ):
529
+ r"""
530
+ Initialize the diffusion model backbone.
531
+
532
+ Args:
533
+ model_type (`str`, *optional*, defaults to 't2v'):
534
+ Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
535
+ patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
536
+ 3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
537
+ text_len (`int`, *optional*, defaults to 512):
538
+ Fixed length for text embeddings
539
+ in_dim (`int`, *optional*, defaults to 16):
540
+ Input video channels (C_in)
541
+ dim (`int`, *optional*, defaults to 2048):
542
+ Hidden dimension of the transformer
543
+ ffn_dim (`int`, *optional*, defaults to 8192):
544
+ Intermediate dimension in feed-forward network
545
+ freq_dim (`int`, *optional*, defaults to 256):
546
+ Dimension for sinusoidal time embeddings
547
+ text_dim (`int`, *optional*, defaults to 4096):
548
+ Input dimension for text embeddings
549
+ out_dim (`int`, *optional*, defaults to 16):
550
+ Output video channels (C_out)
551
+ num_heads (`int`, *optional*, defaults to 16):
552
+ Number of attention heads
553
+ num_layers (`int`, *optional*, defaults to 32):
554
+ Number of transformer blocks
555
+ window_size (`tuple`, *optional*, defaults to (-1, -1)):
556
+ Window size for local attention (-1 indicates global attention)
557
+ qk_norm (`bool`, *optional*, defaults to True):
558
+ Enable query/key normalization
559
+ cross_attn_norm (`bool`, *optional*, defaults to False):
560
+ Enable cross-attention normalization
561
+ eps (`float`, *optional*, defaults to 1e-6):
562
+ Epsilon value for normalization layers
563
+ """
564
+
565
+ super().__init__()
566
+
567
+ assert model_type in ["t2v", "i2v", "flf2v"], f"Invalid model_type: {model_type}. Must be one of ['t2v', 'i2v', 'flf2v']."
568
+ self.model_type = model_type
569
+
570
+ self.patch_size = patch_size
571
+ self.text_len = text_len
572
+ self.in_dim = in_dim
573
+ self.dim = dim
574
+ self.ffn_dim = ffn_dim
575
+ self.freq_dim = freq_dim
576
+ self.text_dim = text_dim
577
+ self.out_dim = out_dim
578
+ self.num_heads = num_heads
579
+ self.num_layers = num_layers
580
+ self.window_size = window_size
581
+ self.qk_norm = qk_norm
582
+ self.cross_attn_norm = cross_attn_norm
583
+ self.eps = eps
584
+ self.attn_mode = attn_mode if attn_mode is not None else "torch"
585
+ self.split_attn = split_attn
586
+
587
+ # embeddings
588
+ self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
589
+ self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))
590
+
591
+ self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
592
+ self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
593
+
594
+ # blocks
595
+ cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
596
+ self.blocks = nn.ModuleList(
597
+ [
598
+ WanAttentionBlock(
599
+ cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn
600
+ )
601
+ for _ in range(num_layers)
602
+ ]
603
+ )
604
+
605
+ # head
606
+ self.head = Head(dim, out_dim, patch_size, eps)
607
+
608
+ # buffers (don't use register_buffer otherwise dtype will be changed in to())
609
+ assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
610
+ d = dim // num_heads
611
+ self.freqs = torch.cat(
612
+ [rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1
613
+ )
614
+ self.freqs_fhw = {}
615
+
616
+ if model_type == "i2v" or model_type == "flf2v":
617
+ self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == "flf2v")
618
+
619
+ # initialize weights
620
+ self.init_weights()
621
+
622
+ self.gradient_checkpointing = False
623
+
624
+ # offloading
625
+ self.blocks_to_swap = None
626
+ self.offloader = None
627
+
628
+ @property
629
+ def dtype(self):
630
+ return next(self.parameters()).dtype
631
+
632
+ @property
633
+ def device(self):
634
+ return next(self.parameters()).device
635
+
636
+ def fp8_optimization(
637
+ self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool, use_scaled_mm: bool = False
638
+ ) -> int:
639
+ """
640
+ Optimize the model state_dict with fp8.
641
+
642
+ Args:
643
+ state_dict (dict[str, torch.Tensor]):
644
+ The state_dict of the model.
645
+ device (torch.device):
646
+ The device to calculate the weight.
647
+ move_to_device (bool):
648
+ Whether to move the weight to the device after optimization.
649
+ """
650
+ TARGET_KEYS = ["blocks"]
651
+ EXCLUDE_KEYS = [
652
+ "norm",
653
+ "patch_embedding",
654
+ "text_embedding",
655
+ "time_embedding",
656
+ "time_projection",
657
+ "head",
658
+ "modulation",
659
+ "img_emb",
660
+ ]
661
+
662
+ # inplace optimization
663
+ state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device)
664
+
665
+ # apply monkey patching
666
+ apply_fp8_monkey_patch(self, state_dict, use_scaled_mm=use_scaled_mm)
667
+
668
+ return state_dict
669
+
670
+ def enable_gradient_checkpointing(self):
671
+ self.gradient_checkpointing = True
672
+
673
+ for block in self.blocks:
674
+ block.enable_gradient_checkpointing()
675
+
676
+ print(f"WanModel: Gradient checkpointing enabled.")
677
+
678
+ def disable_gradient_checkpointing(self):
679
+ self.gradient_checkpointing = False
680
+
681
+ for block in self.blocks:
682
+ block.disable_gradient_checkpointing()
683
+
684
+ print(f"WanModel: Gradient checkpointing disabled.")
685
+
686
+ def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool):
687
+ self.blocks_to_swap = blocks_to_swap
688
+ self.num_blocks = len(self.blocks)
689
+
690
+ assert (
691
+ self.blocks_to_swap <= self.num_blocks - 1
692
+ ), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap."
693
+
694
+ self.offloader = ModelOffloader(
695
+ "wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device # , debug=True
696
+ )
697
+ print(
698
+ f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}"
699
+ )
700
+
701
+ def switch_block_swap_for_inference(self):
702
+ if self.blocks_to_swap:
703
+ self.offloader.set_forward_only(True)
704
+ self.prepare_block_swap_before_forward()
705
+ print(f"WanModel: Block swap set to forward only.")
706
+
707
+ def switch_block_swap_for_training(self):
708
+ if self.blocks_to_swap:
709
+ self.offloader.set_forward_only(False)
710
+ self.prepare_block_swap_before_forward()
711
+ print(f"WanModel: Block swap set to forward and backward.")
712
+
713
+ def move_to_device_except_swap_blocks(self, device: torch.device):
714
+ # assume model is on cpu. do not move blocks to device to reduce temporary memory usage
715
+ if self.blocks_to_swap:
716
+ save_blocks = self.blocks
717
+ self.blocks = None
718
+
719
+ self.to(device)
720
+
721
+ if self.blocks_to_swap:
722
+ self.blocks = save_blocks
723
+
724
+ def prepare_block_swap_before_forward(self):
725
+ if self.blocks_to_swap is None or self.blocks_to_swap == 0:
726
+ return
727
+ self.offloader.prepare_block_devices_before_forward(self.blocks)
728
+
729
+ def forward(self, x, t, context, seq_len, clip_fea=None, y=None, skip_block_indices=None, f_indices=None):
730
+ r"""
731
+ Forward pass through the diffusion model
732
+
733
+ Args:
734
+ x (List[Tensor]):
735
+ List of input video tensors, each with shape [C_in, F, H, W]
736
+ t (Tensor):
737
+ Diffusion timesteps tensor of shape [B]
738
+ context (List[Tensor]):
739
+ List of text embeddings each with shape [L, C]
740
+ seq_len (`int`):
741
+ Maximum sequence length for positional encoding
742
+ clip_fea (Tensor, *optional*):
743
+ CLIP image features for image-to-video mode
744
+ y (List[Tensor], *optional*):
745
+ Conditional video inputs for image-to-video mode, same shape as x
746
+ skip_block_indices (List[int], *optional*):
747
+ Indices of blocks to skip during forward pass
748
+ f_indices (List[List[int]], *optional*):
749
+ Indices of frames used for rotary embeddings, list of lists for each video in the batch
750
+
751
+ Returns:
752
+ List[Tensor]:
753
+ List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
754
+ """
755
+ # remove assertions to work with Fun-Control T2V
756
+ # if self.model_type == "i2v":
757
+ # assert clip_fea is not None and y is not None
758
+ # params
759
+ device = self.patch_embedding.weight.device
760
+ if self.freqs.device != device:
761
+ self.freqs = self.freqs.to(device)
762
+
763
+ if y is not None:
764
+ x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
765
+ y = None
766
+
767
+ # embeddings
768
+ x = [self.patch_embedding(u.unsqueeze(0)) for u in x] # x[0].shape = [1, 5120, F, H, W]
769
+ grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) # list of [F, H, W]
770
+
771
+ freqs_list = []
772
+ for i, fhw in enumerate(grid_sizes):
773
+ fhw = tuple(fhw.tolist())
774
+ if f_indices is not None:
775
+ fhw = tuple(list(fhw) + f_indices[i]) # add f_indices to fhw for cache key
776
+ if fhw not in self.freqs_fhw:
777
+ c = self.dim // self.num_heads // 2
778
+ self.freqs_fhw[fhw] = calculate_freqs_i(fhw, c, self.freqs, None if f_indices is None else f_indices[i])
779
+ freqs_list.append(self.freqs_fhw[fhw])
780
+
781
+ x = [u.flatten(2).transpose(1, 2) for u in x]
782
+ seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
783
+ assert seq_lens.max() <= seq_len, f"Sequence length exceeds maximum allowed length {seq_len}. Got {seq_lens.max()}"
784
+ x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
785
+
786
+ # time embeddings
787
+ # with amp.autocast(dtype=torch.float32):
788
+ with torch.amp.autocast(device_type=device.type, dtype=torch.float32):
789
+ e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float())
790
+ e0 = self.time_projection(e).unflatten(1, (6, self.dim))
791
+ assert e.dtype == torch.float32 and e0.dtype == torch.float32
792
+
793
+ # context
794
+ context_lens = None
795
+ if type(context) is list:
796
+ context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context])
797
+ context = self.text_embedding(context)
798
+
799
+ if clip_fea is not None:
800
+ context_clip = self.img_emb(clip_fea) # bs x 257 x dim
801
+ context = torch.concat([context_clip, context], dim=1)
802
+ clip_fea = None
803
+ context_clip = None
804
+
805
+ # arguments
806
+ kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens)
807
+
808
+ if self.blocks_to_swap:
809
+ clean_memory_on_device(device)
810
+
811
+ # print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}")
812
+ for block_idx, block in enumerate(self.blocks):
813
+ is_block_skipped = skip_block_indices is not None and block_idx in skip_block_indices
814
+
815
+ if self.blocks_to_swap and not is_block_skipped:
816
+ self.offloader.wait_for_block(block_idx)
817
+
818
+ if not is_block_skipped:
819
+ x = block(x, **kwargs)
820
+
821
+ if self.blocks_to_swap:
822
+ self.offloader.submit_move_blocks_forward(self.blocks, block_idx)
823
+
824
+ # head
825
+ x = self.head(x, e)
826
+
827
+ # unpatchify
828
+ x = self.unpatchify(x, grid_sizes)
829
+ return [u.float() for u in x]
830
+
831
+ def unpatchify(self, x, grid_sizes):
832
+ r"""
833
+ Reconstruct video tensors from patch embeddings.
834
+
835
+ Args:
836
+ x (List[Tensor]):
837
+ List of patchified features, each with shape [L, C_out * prod(patch_size)]
838
+ grid_sizes (Tensor):
839
+ Original spatial-temporal grid dimensions before patching,
840
+ shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
841
+
842
+ Returns:
843
+ List[Tensor]:
844
+ Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
845
+ """
846
+
847
+ c = self.out_dim
848
+ out = []
849
+ for u, v in zip(x, grid_sizes.tolist()):
850
+ u = u[: math.prod(v)].view(*v, *self.patch_size, c)
851
+ u = torch.einsum("fhwpqrc->cfphqwr", u)
852
+ u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
853
+ out.append(u)
854
+ return out
855
+
856
+ def init_weights(self):
857
+ r"""
858
+ Initialize model parameters using Xavier initialization.
859
+ """
860
+
861
+ # basic init
862
+ for m in self.modules():
863
+ if isinstance(m, nn.Linear):
864
+ nn.init.xavier_uniform_(m.weight)
865
+ if m.bias is not None:
866
+ nn.init.zeros_(m.bias)
867
+
868
+ # init embeddings
869
+ nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
870
+ for m in self.text_embedding.modules():
871
+ if isinstance(m, nn.Linear):
872
+ nn.init.normal_(m.weight, std=0.02)
873
+ for m in self.time_embedding.modules():
874
+ if isinstance(m, nn.Linear):
875
+ nn.init.normal_(m.weight, std=0.02)
876
+
877
+ # init output layer
878
+ nn.init.zeros_(self.head.head.weight)
879
+
880
+
881
+ def detect_wan_sd_dtype(path: str) -> torch.dtype:
882
+ # get dtype from model weights
883
+ with MemoryEfficientSafeOpen(path) as f:
884
+ keys = set(f.keys())
885
+ key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight" # 1.3B
886
+ key2 = "blocks.0.cross_attn.k.weight" # 14B
887
+ if key1 in keys:
888
+ dit_dtype = f.get_tensor(key1).dtype
889
+ elif key2 in keys:
890
+ dit_dtype = f.get_tensor(key2).dtype
891
+ else:
892
+ raise ValueError(f"Could not find the dtype in the model weights: {path}")
893
+ logger.info(f"Detected DiT dtype: {dit_dtype}")
894
+ return dit_dtype
895
+
896
+
897
+ def load_wan_model(
898
+ config: any,
899
+ device: Union[str, torch.device],
900
+ dit_path: str,
901
+ attn_mode: str,
902
+ split_attn: bool,
903
+ loading_device: Union[str, torch.device],
904
+ dit_weight_dtype: Optional[torch.dtype],
905
+ fp8_scaled: bool = False,
906
+ ) -> WanModel:
907
+ # dit_weight_dtype is None for fp8_scaled
908
+ assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None)
909
+
910
+ device = torch.device(device)
911
+ loading_device = torch.device(loading_device)
912
+
913
+ with init_empty_weights():
914
+ logger.info(f"Creating WanModel")
915
+ model = WanModel(
916
+ model_type="i2v" if config.i2v else ("flf2v" if config.flf2v else "t2v"),
917
+ dim=config.dim,
918
+ eps=config.eps,
919
+ ffn_dim=config.ffn_dim,
920
+ freq_dim=config.freq_dim,
921
+ in_dim=config.in_dim,
922
+ num_heads=config.num_heads,
923
+ num_layers=config.num_layers,
924
+ out_dim=config.out_dim,
925
+ text_len=config.text_len,
926
+ attn_mode=attn_mode,
927
+ split_attn=split_attn,
928
+ )
929
+ if dit_weight_dtype is not None:
930
+ model.to(dit_weight_dtype)
931
+
932
+ # if fp8_scaled, load model weights to CPU to reduce VRAM usage. Otherwise, load to the specified device (CPU for block swap or CUDA for others)
933
+ wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device
934
+ logger.info(f"Loading DiT model from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}")
935
+
936
+ # load model weights with the specified dtype or as is
937
+ sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype)
938
+
939
+ # remove "model.diffusion_model." prefix: 1.3B model has this prefix
940
+ for key in list(sd.keys()):
941
+ if key.startswith("model.diffusion_model."):
942
+ sd[key[22:]] = sd.pop(key)
943
+
944
+ if fp8_scaled:
945
+ # fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap)
946
+ logger.info(f"Optimizing model weights to fp8. This may take a while.")
947
+ sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu")
948
+
949
+ if loading_device.type != "cpu":
950
+ # make sure all the model weights are on the loading_device
951
+ logger.info(f"Moving weights to {loading_device}")
952
+ for key in sd.keys():
953
+ sd[key] = sd[key].to(loading_device)
954
+
955
+ info = model.load_state_dict(sd, strict=True, assign=True)
956
+ logger.info(f"Loaded DiT model from {dit_path}, info={info}")
957
+
958
+ return model
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/t5.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from transformers.models.t5.modeling_t5
2
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
3
+ # import logging
4
+ import math
5
+ import os
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from musubi_tuner.wan.modules.tokenizers import HuggingfaceTokenizer
12
+ from accelerate import init_empty_weights
13
+ from safetensors.torch import load_file
14
+
15
+ import logging
16
+
17
+ logger = logging.getLogger(__name__)
18
+ logging.basicConfig(level=logging.INFO)
19
+
20
+ __all__ = [
21
+ "T5Model",
22
+ "T5Encoder",
23
+ "T5Decoder",
24
+ "T5EncoderModel",
25
+ ]
26
+
27
+
28
+ def fp16_clamp(x):
29
+ if x.dtype == torch.float16 and torch.isinf(x).any():
30
+ clamp = torch.finfo(x.dtype).max - 1000
31
+ x = torch.clamp(x, min=-clamp, max=clamp)
32
+ return x
33
+
34
+
35
+ def init_weights(m):
36
+ if isinstance(m, T5LayerNorm):
37
+ nn.init.ones_(m.weight)
38
+ elif isinstance(m, T5Model):
39
+ nn.init.normal_(m.token_embedding.weight, std=1.0)
40
+ elif isinstance(m, T5FeedForward):
41
+ nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
42
+ nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
43
+ nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
44
+ elif isinstance(m, T5Attention):
45
+ nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
46
+ nn.init.normal_(m.k.weight, std=m.dim**-0.5)
47
+ nn.init.normal_(m.v.weight, std=m.dim**-0.5)
48
+ nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
49
+ elif isinstance(m, T5RelativeEmbedding):
50
+ nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
51
+
52
+
53
+ class GELU(nn.Module):
54
+
55
+ def forward(self, x):
56
+ return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
57
+
58
+
59
+ class T5LayerNorm(nn.Module):
60
+
61
+ def __init__(self, dim, eps=1e-6):
62
+ super(T5LayerNorm, self).__init__()
63
+ self.dim = dim
64
+ self.eps = eps
65
+ self.weight = nn.Parameter(torch.ones(dim))
66
+
67
+ def forward(self, x):
68
+ x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
69
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
70
+ x = x.type_as(self.weight)
71
+ return self.weight * x
72
+
73
+
74
+ class T5Attention(nn.Module):
75
+
76
+ def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
77
+ assert dim_attn % num_heads == 0
78
+ super(T5Attention, self).__init__()
79
+ self.dim = dim
80
+ self.dim_attn = dim_attn
81
+ self.num_heads = num_heads
82
+ self.head_dim = dim_attn // num_heads
83
+
84
+ # layers
85
+ self.q = nn.Linear(dim, dim_attn, bias=False)
86
+ self.k = nn.Linear(dim, dim_attn, bias=False)
87
+ self.v = nn.Linear(dim, dim_attn, bias=False)
88
+ self.o = nn.Linear(dim_attn, dim, bias=False)
89
+ self.dropout = nn.Dropout(dropout)
90
+
91
+ def forward(self, x, context=None, mask=None, pos_bias=None):
92
+ """
93
+ x: [B, L1, C].
94
+ context: [B, L2, C] or None.
95
+ mask: [B, L2] or [B, L1, L2] or None.
96
+ """
97
+ # check inputs
98
+ context = x if context is None else context
99
+ b, n, c = x.size(0), self.num_heads, self.head_dim
100
+
101
+ # compute query, key, value
102
+ q = self.q(x).view(b, -1, n, c)
103
+ k = self.k(context).view(b, -1, n, c)
104
+ v = self.v(context).view(b, -1, n, c)
105
+
106
+ # attention bias
107
+ attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
108
+ if pos_bias is not None:
109
+ attn_bias += pos_bias
110
+ if mask is not None:
111
+ assert mask.ndim in [2, 3]
112
+ mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
113
+ attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
114
+
115
+ # compute attention (T5 does not use scaling)
116
+ attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
117
+ attn = F.softmax(attn.float(), dim=-1).type_as(attn)
118
+ x = torch.einsum("bnij,bjnc->binc", attn, v)
119
+
120
+ # output
121
+ x = x.reshape(b, -1, n * c)
122
+ x = self.o(x)
123
+ x = self.dropout(x)
124
+ return x
125
+
126
+
127
+ class T5FeedForward(nn.Module):
128
+
129
+ def __init__(self, dim, dim_ffn, dropout=0.1):
130
+ super(T5FeedForward, self).__init__()
131
+ self.dim = dim
132
+ self.dim_ffn = dim_ffn
133
+
134
+ # layers
135
+ self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
136
+ self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
137
+ self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
138
+ self.dropout = nn.Dropout(dropout)
139
+
140
+ def forward(self, x):
141
+ x = self.fc1(x) * self.gate(x)
142
+ x = self.dropout(x)
143
+ x = self.fc2(x)
144
+ x = self.dropout(x)
145
+ return x
146
+
147
+
148
+ class T5SelfAttention(nn.Module):
149
+
150
+ def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1):
151
+ super(T5SelfAttention, self).__init__()
152
+ self.dim = dim
153
+ self.dim_attn = dim_attn
154
+ self.dim_ffn = dim_ffn
155
+ self.num_heads = num_heads
156
+ self.num_buckets = num_buckets
157
+ self.shared_pos = shared_pos
158
+
159
+ # layers
160
+ self.norm1 = T5LayerNorm(dim)
161
+ self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
162
+ self.norm2 = T5LayerNorm(dim)
163
+ self.ffn = T5FeedForward(dim, dim_ffn, dropout)
164
+ self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True)
165
+
166
+ def forward(self, x, mask=None, pos_bias=None):
167
+ e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
168
+ x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
169
+ x = fp16_clamp(x + self.ffn(self.norm2(x)))
170
+ return x
171
+
172
+
173
+ class T5CrossAttention(nn.Module):
174
+
175
+ def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1):
176
+ super(T5CrossAttention, self).__init__()
177
+ self.dim = dim
178
+ self.dim_attn = dim_attn
179
+ self.dim_ffn = dim_ffn
180
+ self.num_heads = num_heads
181
+ self.num_buckets = num_buckets
182
+ self.shared_pos = shared_pos
183
+
184
+ # layers
185
+ self.norm1 = T5LayerNorm(dim)
186
+ self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
187
+ self.norm2 = T5LayerNorm(dim)
188
+ self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
189
+ self.norm3 = T5LayerNorm(dim)
190
+ self.ffn = T5FeedForward(dim, dim_ffn, dropout)
191
+ self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
192
+
193
+ def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
194
+ e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
195
+ x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
196
+ x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
197
+ x = fp16_clamp(x + self.ffn(self.norm3(x)))
198
+ return x
199
+
200
+
201
+ class T5RelativeEmbedding(nn.Module):
202
+
203
+ def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
204
+ super(T5RelativeEmbedding, self).__init__()
205
+ self.num_buckets = num_buckets
206
+ self.num_heads = num_heads
207
+ self.bidirectional = bidirectional
208
+ self.max_dist = max_dist
209
+
210
+ # layers
211
+ self.embedding = nn.Embedding(num_buckets, num_heads)
212
+
213
+ def forward(self, lq, lk):
214
+ device = self.embedding.weight.device
215
+ # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
216
+ # torch.arange(lq).unsqueeze(1).to(device)
217
+ rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
218
+ rel_pos = self._relative_position_bucket(rel_pos)
219
+ rel_pos_embeds = self.embedding(rel_pos)
220
+ rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0) # [1, N, Lq, Lk]
221
+ return rel_pos_embeds.contiguous()
222
+
223
+ def _relative_position_bucket(self, rel_pos):
224
+ # preprocess
225
+ if self.bidirectional:
226
+ num_buckets = self.num_buckets // 2
227
+ rel_buckets = (rel_pos > 0).long() * num_buckets
228
+ rel_pos = torch.abs(rel_pos)
229
+ else:
230
+ num_buckets = self.num_buckets
231
+ rel_buckets = 0
232
+ rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
233
+
234
+ # embeddings for small and large positions
235
+ max_exact = num_buckets // 2
236
+ rel_pos_large = (
237
+ max_exact
238
+ + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
239
+ )
240
+ rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
241
+ rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
242
+ return rel_buckets
243
+
244
+
245
+ class T5Encoder(nn.Module):
246
+
247
+ def __init__(self, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1):
248
+ super(T5Encoder, self).__init__()
249
+ self.dim = dim
250
+ self.dim_attn = dim_attn
251
+ self.dim_ffn = dim_ffn
252
+ self.num_heads = num_heads
253
+ self.num_layers = num_layers
254
+ self.num_buckets = num_buckets
255
+ self.shared_pos = shared_pos
256
+
257
+ # layers
258
+ self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
259
+ self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True) if shared_pos else None
260
+ self.dropout = nn.Dropout(dropout)
261
+ self.blocks = nn.ModuleList(
262
+ [T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)]
263
+ )
264
+ self.norm = T5LayerNorm(dim)
265
+
266
+ # initialize weights
267
+ self.apply(init_weights)
268
+
269
+ def prepare_fp8(self, target_dtype=torch.bfloat16):
270
+ def forward_hook(module):
271
+ def forward(hidden_states):
272
+ hidden_gelu = module.act(module.wi_0(hidden_states))
273
+ hidden_linear = module.wi_1(hidden_states)
274
+ hidden_states = hidden_gelu * hidden_linear
275
+ hidden_states = module.dropout(hidden_states)
276
+
277
+ hidden_states = module.wo(hidden_states)
278
+ return hidden_states
279
+
280
+ return forward
281
+
282
+ for module in self.modules():
283
+ if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
284
+ # print("set", module.__class__.__name__, "to", target_dtype)
285
+ module.to(target_dtype)
286
+ if module.__class__.__name__ in ["T5DenseGatedActDense"]:
287
+ # print("set", module.__class__.__name__, "hooks")
288
+ module.forward = forward_hook(module)
289
+
290
+ def forward(self, ids, mask=None):
291
+ x = self.token_embedding(ids)
292
+ x = self.dropout(x)
293
+ e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
294
+ for block in self.blocks:
295
+ x = block(x, mask, pos_bias=e)
296
+ x = self.norm(x)
297
+ x = self.dropout(x)
298
+ return x
299
+
300
+
301
+ class T5Decoder(nn.Module):
302
+
303
+ def __init__(self, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1):
304
+ super(T5Decoder, self).__init__()
305
+ self.dim = dim
306
+ self.dim_attn = dim_attn
307
+ self.dim_ffn = dim_ffn
308
+ self.num_heads = num_heads
309
+ self.num_layers = num_layers
310
+ self.num_buckets = num_buckets
311
+ self.shared_pos = shared_pos
312
+
313
+ # layers
314
+ self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
315
+ self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
316
+ self.dropout = nn.Dropout(dropout)
317
+ self.blocks = nn.ModuleList(
318
+ [T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)]
319
+ )
320
+ self.norm = T5LayerNorm(dim)
321
+
322
+ # initialize weights
323
+ self.apply(init_weights)
324
+
325
+ def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
326
+ b, s = ids.size()
327
+
328
+ # causal mask
329
+ if mask is None:
330
+ mask = torch.tril(torch.ones(1, s, s).to(ids.device))
331
+ elif mask.ndim == 2:
332
+ mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))
333
+
334
+ # layers
335
+ x = self.token_embedding(ids)
336
+ x = self.dropout(x)
337
+ e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
338
+ for block in self.blocks:
339
+ x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
340
+ x = self.norm(x)
341
+ x = self.dropout(x)
342
+ return x
343
+
344
+
345
+ class T5Model(nn.Module):
346
+
347
+ def __init__(
348
+ self,
349
+ vocab_size,
350
+ dim,
351
+ dim_attn,
352
+ dim_ffn,
353
+ num_heads,
354
+ encoder_layers,
355
+ decoder_layers,
356
+ num_buckets,
357
+ shared_pos=True,
358
+ dropout=0.1,
359
+ ):
360
+ super(T5Model, self).__init__()
361
+ self.vocab_size = vocab_size
362
+ self.dim = dim
363
+ self.dim_attn = dim_attn
364
+ self.dim_ffn = dim_ffn
365
+ self.num_heads = num_heads
366
+ self.encoder_layers = encoder_layers
367
+ self.decoder_layers = decoder_layers
368
+ self.num_buckets = num_buckets
369
+
370
+ # layers
371
+ self.token_embedding = nn.Embedding(vocab_size, dim)
372
+ self.encoder = T5Encoder(
373
+ self.token_embedding, dim, dim_attn, dim_ffn, num_heads, encoder_layers, num_buckets, shared_pos, dropout
374
+ )
375
+ self.decoder = T5Decoder(
376
+ self.token_embedding, dim, dim_attn, dim_ffn, num_heads, decoder_layers, num_buckets, shared_pos, dropout
377
+ )
378
+ self.head = nn.Linear(dim, vocab_size, bias=False)
379
+
380
+ # initialize weights
381
+ self.apply(init_weights)
382
+
383
+ def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
384
+ x = self.encoder(encoder_ids, encoder_mask)
385
+ x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
386
+ x = self.head(x)
387
+ return x
388
+
389
+
390
+ def _t5(
391
+ name,
392
+ encoder_only=False,
393
+ decoder_only=False,
394
+ return_tokenizer=False,
395
+ tokenizer_kwargs={},
396
+ **kwargs,
397
+ ):
398
+ # dtype=torch.float32,
399
+ # device="cpu",
400
+ # sanity check
401
+ assert not (encoder_only and decoder_only)
402
+
403
+ # params
404
+ if encoder_only:
405
+ model_cls = T5Encoder
406
+ kwargs["vocab"] = kwargs.pop("vocab_size")
407
+ kwargs["num_layers"] = kwargs.pop("encoder_layers")
408
+ _ = kwargs.pop("decoder_layers")
409
+ elif decoder_only:
410
+ model_cls = T5Decoder
411
+ kwargs["vocab"] = kwargs.pop("vocab_size")
412
+ kwargs["num_layers"] = kwargs.pop("decoder_layers")
413
+ _ = kwargs.pop("encoder_layers")
414
+ else:
415
+ model_cls = T5Model
416
+
417
+ # # init model
418
+ # with torch.device(device):
419
+ model = model_cls(**kwargs)
420
+
421
+ # # set device
422
+ # model = model.to(dtype=dtype, device=device)
423
+
424
+ # init tokenizer
425
+ if return_tokenizer:
426
+ from musubi_tuner.wan.modules.tokenizers import HuggingfaceTokenizer
427
+
428
+ tokenizer = HuggingfaceTokenizer(f"google/{name}", **tokenizer_kwargs)
429
+ return model, tokenizer
430
+ else:
431
+ return model
432
+
433
+
434
+ def umt5_xxl(**kwargs):
435
+ cfg = dict(
436
+ vocab_size=256384,
437
+ dim=4096,
438
+ dim_attn=4096,
439
+ dim_ffn=10240,
440
+ num_heads=64,
441
+ encoder_layers=24,
442
+ decoder_layers=24,
443
+ num_buckets=32,
444
+ shared_pos=False,
445
+ dropout=0.1,
446
+ )
447
+ cfg.update(**kwargs)
448
+ return _t5("umt5-xxl", **cfg)
449
+
450
+
451
+ class T5EncoderModel:
452
+
453
+ def __init__(
454
+ self,
455
+ text_len,
456
+ dtype=torch.bfloat16,
457
+ device=torch.cuda.current_device(),
458
+ checkpoint_path=None,
459
+ tokenizer_path=None,
460
+ shard_fn=None,
461
+ weight_path=None,
462
+ fp8=False,
463
+ ):
464
+ self.text_len = text_len
465
+ self.dtype = dtype if not fp8 else torch.float8_e4m3fn
466
+ self.device = device
467
+ self.checkpoint_path = checkpoint_path
468
+ self.tokenizer_path = tokenizer_path
469
+
470
+ # init model
471
+ with init_empty_weights():
472
+ model = umt5_xxl(encoder_only=True, return_tokenizer=False)
473
+
474
+ model = model.eval().requires_grad_(False)
475
+ if checkpoint_path is not None:
476
+ logger.info(f"loading {checkpoint_path}")
477
+ model.load_state_dict(torch.load(checkpoint_path, map_location="cpu"))
478
+ else:
479
+ logger.info(f"loading weights from {weight_path}")
480
+ if os.path.splitext(weight_path)[1] == ".safetensors":
481
+ sd = load_file(weight_path)
482
+ else:
483
+ sd = torch.load(weight_path, map_location="cpu", weights_only=True)
484
+ # remove prefix "encoder." from the state dict
485
+ sd = {k.replace("encoder.", ""): v for k, v in sd.items()}
486
+ model.load_state_dict(sd, strict=True, assign=True)
487
+
488
+ logger.info(f"moving model to {device} and casting to {self.dtype}")
489
+ model = model.to(device, dtype=self.dtype)
490
+
491
+ if fp8:
492
+ logger.info("preparing model for fp8")
493
+ model.prepare_fp8(dtype)
494
+
495
+ self.model = model
496
+ # if shard_fn is not None:
497
+ # self.model = shard_fn(self.model, sync_module_states=False)
498
+ # else:
499
+ # self.model.to(self.device)
500
+ # init tokenizer
501
+ if tokenizer_path is None:
502
+ tokenizer_path = "Wan-AI/Wan2.1-T2V-14B"
503
+ subfolder = "google/umt5-xxl"
504
+ else:
505
+ subfolder = None
506
+ self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace", subfolder=subfolder)
507
+
508
+ def __call__(self, texts, device):
509
+ ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
510
+ ids = ids.to(device)
511
+ mask = mask.to(device)
512
+ seq_lens = mask.gt(0).sum(dim=1).long()
513
+ context = self.model(ids, mask)
514
+ return [u[:v] for u, v in zip(context, seq_lens)]
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/tokenizers.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import html
3
+ import string
4
+
5
+ import ftfy
6
+ import regex as re
7
+ from transformers import AutoTokenizer
8
+
9
+ __all__ = ['HuggingfaceTokenizer']
10
+
11
+
12
+ def basic_clean(text):
13
+ text = ftfy.fix_text(text)
14
+ text = html.unescape(html.unescape(text))
15
+ return text.strip()
16
+
17
+
18
+ def whitespace_clean(text):
19
+ text = re.sub(r'\s+', ' ', text)
20
+ text = text.strip()
21
+ return text
22
+
23
+
24
+ def canonicalize(text, keep_punctuation_exact_string=None):
25
+ text = text.replace('_', ' ')
26
+ if keep_punctuation_exact_string:
27
+ text = keep_punctuation_exact_string.join(
28
+ part.translate(str.maketrans('', '', string.punctuation))
29
+ for part in text.split(keep_punctuation_exact_string))
30
+ else:
31
+ text = text.translate(str.maketrans('', '', string.punctuation))
32
+ text = text.lower()
33
+ text = re.sub(r'\s+', ' ', text)
34
+ return text.strip()
35
+
36
+
37
+ class HuggingfaceTokenizer:
38
+
39
+ def __init__(self, name, seq_len=None, clean=None, **kwargs):
40
+ assert clean in (None, 'whitespace', 'lower', 'canonicalize')
41
+ self.name = name
42
+ self.seq_len = seq_len
43
+ self.clean = clean
44
+
45
+ # init tokenizer
46
+ self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
47
+ self.vocab_size = self.tokenizer.vocab_size
48
+
49
+ def __call__(self, sequence, **kwargs):
50
+ return_mask = kwargs.pop('return_mask', False)
51
+
52
+ # arguments
53
+ _kwargs = {'return_tensors': 'pt'}
54
+ if self.seq_len is not None:
55
+ _kwargs.update({
56
+ 'padding': 'max_length',
57
+ 'truncation': True,
58
+ 'max_length': self.seq_len
59
+ })
60
+ _kwargs.update(**kwargs)
61
+
62
+ # tokenization
63
+ if isinstance(sequence, str):
64
+ sequence = [sequence]
65
+ if self.clean:
66
+ sequence = [self._clean(u) for u in sequence]
67
+ ids = self.tokenizer(sequence, **_kwargs)
68
+
69
+ # output
70
+ if return_mask:
71
+ return ids.input_ids, ids.attention_mask
72
+ else:
73
+ return ids.input_ids
74
+
75
+ def _clean(self, text):
76
+ if self.clean == 'whitespace':
77
+ text = whitespace_clean(basic_clean(text))
78
+ elif self.clean == 'lower':
79
+ text = whitespace_clean(basic_clean(text)).lower()
80
+ elif self.clean == 'canonicalize':
81
+ text = canonicalize(basic_clean(text))
82
+ return text
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/vae.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import logging
3
+ import os
4
+ from typing import Optional, Union
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from einops import rearrange
10
+
11
+ from safetensors.torch import load_file
12
+
13
+ __all__ = [
14
+ "WanVAE",
15
+ ]
16
+
17
+ CACHE_T = 2
18
+
19
+
20
+ class CausalConv3d(nn.Conv3d):
21
+ """
22
+ Causal 3d convolusion.
23
+ """
24
+
25
+ def __init__(self, *args, **kwargs):
26
+ super().__init__(*args, **kwargs)
27
+ self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
28
+ self.padding = (0, 0, 0)
29
+
30
+ def forward(self, x, cache_x=None):
31
+ padding = list(self._padding)
32
+ if cache_x is not None and self._padding[4] > 0:
33
+ cache_x = cache_x.to(x.device)
34
+ x = torch.cat([cache_x, x], dim=2)
35
+ padding[4] -= cache_x.shape[2]
36
+ x = F.pad(x, padding)
37
+
38
+ return super().forward(x)
39
+
40
+
41
+ class RMS_norm(nn.Module):
42
+
43
+ def __init__(self, dim, channel_first=True, images=True, bias=False):
44
+ super().__init__()
45
+ broadcastable_dims = (1, 1, 1) if not images else (1, 1)
46
+ shape = (dim, *broadcastable_dims) if channel_first else (dim,)
47
+
48
+ self.channel_first = channel_first
49
+ self.scale = dim**0.5
50
+ self.gamma = nn.Parameter(torch.ones(shape))
51
+ self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
52
+
53
+ def forward(self, x):
54
+ return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
55
+
56
+
57
+ class Upsample(nn.Upsample):
58
+
59
+ def forward(self, x):
60
+ """
61
+ Fix bfloat16 support for nearest neighbor interpolation.
62
+ """
63
+ return super().forward(x.float()).type_as(x)
64
+
65
+
66
+ class Resample(nn.Module):
67
+
68
+ def __init__(self, dim, mode):
69
+ assert mode in ("none", "upsample2d", "upsample3d", "downsample2d", "downsample3d")
70
+ super().__init__()
71
+ self.dim = dim
72
+ self.mode = mode
73
+
74
+ # layers
75
+ if mode == "upsample2d":
76
+ self.resample = nn.Sequential(
77
+ Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
78
+ )
79
+ elif mode == "upsample3d":
80
+ self.resample = nn.Sequential(
81
+ Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
82
+ )
83
+ self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
84
+
85
+ elif mode == "downsample2d":
86
+ self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
87
+ elif mode == "downsample3d":
88
+ self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
89
+ self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
90
+
91
+ else:
92
+ self.resample = nn.Identity()
93
+
94
+ self.cache_device = None
95
+
96
+ def set_cache_device(self, device):
97
+ self.cache_device = device
98
+
99
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
100
+ cache_device = self.cache_device if self.cache_device is not None else x.device
101
+
102
+ b, c, t, h, w = x.size()
103
+ if self.mode == "upsample3d":
104
+ if feat_cache is not None:
105
+ idx = feat_idx[0]
106
+ if feat_cache[idx] is None:
107
+ feat_cache[idx] = "Rep"
108
+ feat_idx[0] += 1
109
+ else:
110
+
111
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
112
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
113
+ # cache last frame of last two chunk
114
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
115
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
116
+ cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
117
+ if feat_cache[idx] == "Rep":
118
+ x = self.time_conv(x)
119
+ else:
120
+ x = self.time_conv(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
121
+ feat_cache[idx] = cache_x
122
+ feat_idx[0] += 1
123
+
124
+ x = x.reshape(b, 2, c, t, h, w)
125
+ x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
126
+ x = x.reshape(b, c, t * 2, h, w)
127
+ t = x.shape[2]
128
+ x = rearrange(x, "b c t h w -> (b t) c h w")
129
+ x = self.resample(x)
130
+ x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
131
+
132
+ if self.mode == "downsample3d":
133
+ if feat_cache is not None:
134
+ idx = feat_idx[0]
135
+ if feat_cache[idx] is None:
136
+ feat_cache[idx] = x.clone().to(cache_device)
137
+ feat_idx[0] += 1
138
+ else:
139
+
140
+ cache_x = x[:, :, -1:, :, :].clone().to(cache_device)
141
+ # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
142
+ # # cache last frame of last two chunk
143
+ # cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
144
+
145
+ x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :].to(x.device), x], 2))
146
+ feat_cache[idx] = cache_x
147
+ feat_idx[0] += 1
148
+ return x
149
+
150
+ def init_weight(self, conv):
151
+ conv_weight = conv.weight
152
+ nn.init.zeros_(conv_weight)
153
+ c1, c2, t, h, w = conv_weight.size()
154
+ one_matrix = torch.eye(c1, c2)
155
+ init_matrix = one_matrix
156
+ nn.init.zeros_(conv_weight)
157
+ # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
158
+ conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5
159
+ conv.weight.data.copy_(conv_weight)
160
+ nn.init.zeros_(conv.bias.data)
161
+
162
+ def init_weight2(self, conv):
163
+ conv_weight = conv.weight.data
164
+ nn.init.zeros_(conv_weight)
165
+ c1, c2, t, h, w = conv_weight.size()
166
+ init_matrix = torch.eye(c1 // 2, c2)
167
+ # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
168
+ conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
169
+ conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
170
+ conv.weight.data.copy_(conv_weight)
171
+ nn.init.zeros_(conv.bias.data)
172
+
173
+
174
+ class ResidualBlock(nn.Module):
175
+
176
+ def __init__(self, in_dim, out_dim, dropout=0.0):
177
+ super().__init__()
178
+ self.in_dim = in_dim
179
+ self.out_dim = out_dim
180
+
181
+ # layers
182
+ self.residual = nn.Sequential(
183
+ RMS_norm(in_dim, images=False),
184
+ nn.SiLU(),
185
+ CausalConv3d(in_dim, out_dim, 3, padding=1),
186
+ RMS_norm(out_dim, images=False),
187
+ nn.SiLU(),
188
+ nn.Dropout(dropout),
189
+ CausalConv3d(out_dim, out_dim, 3, padding=1),
190
+ )
191
+ self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
192
+
193
+ self.cache_device = None
194
+
195
+ def set_cache_device(self, device):
196
+ self.cache_device = device
197
+
198
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
199
+ cache_device = self.cache_device if self.cache_device is not None else x.device
200
+
201
+ h = self.shortcut(x)
202
+ for layer in self.residual:
203
+ if isinstance(layer, CausalConv3d) and feat_cache is not None:
204
+ idx = feat_idx[0]
205
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
206
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
207
+ # cache last frame of last two chunk
208
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
209
+ x = layer(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
210
+ feat_cache[idx] = cache_x
211
+ feat_idx[0] += 1
212
+ else:
213
+ x = layer(x)
214
+ return x + h
215
+
216
+
217
+ class AttentionBlock(nn.Module):
218
+ """
219
+ Causal self-attention with a single head.
220
+ """
221
+
222
+ def __init__(self, dim):
223
+ super().__init__()
224
+ self.dim = dim
225
+
226
+ # layers
227
+ self.norm = RMS_norm(dim)
228
+ self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
229
+ self.proj = nn.Conv2d(dim, dim, 1)
230
+
231
+ # zero out the last layer params
232
+ nn.init.zeros_(self.proj.weight)
233
+
234
+ def forward(self, x):
235
+ identity = x
236
+ b, c, t, h, w = x.size()
237
+ x = rearrange(x, "b c t h w -> (b t) c h w")
238
+ x = self.norm(x)
239
+ # compute query, key, value
240
+ q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
241
+
242
+ # apply attention
243
+ x = F.scaled_dot_product_attention(
244
+ q,
245
+ k,
246
+ v,
247
+ )
248
+ x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
249
+
250
+ # output
251
+ x = self.proj(x)
252
+ x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
253
+ return x + identity
254
+
255
+
256
+ class Encoder3d(nn.Module):
257
+
258
+ def __init__(
259
+ self,
260
+ dim=128,
261
+ z_dim=4,
262
+ dim_mult=[1, 2, 4, 4],
263
+ num_res_blocks=2,
264
+ attn_scales=[],
265
+ temperal_downsample=[True, True, False],
266
+ dropout=0.0,
267
+ ):
268
+ super().__init__()
269
+ self.dim = dim
270
+ self.z_dim = z_dim
271
+ self.dim_mult = dim_mult
272
+ self.num_res_blocks = num_res_blocks
273
+ self.attn_scales = attn_scales
274
+ self.temperal_downsample = temperal_downsample
275
+
276
+ # dimensions
277
+ dims = [dim * u for u in [1] + dim_mult]
278
+ scale = 1.0
279
+
280
+ # init block
281
+ self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
282
+
283
+ # downsample blocks
284
+ downsamples = []
285
+ for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
286
+ # residual (+attention) blocks
287
+ for _ in range(num_res_blocks):
288
+ downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
289
+ if scale in attn_scales:
290
+ downsamples.append(AttentionBlock(out_dim))
291
+ in_dim = out_dim
292
+
293
+ # downsample block
294
+ if i != len(dim_mult) - 1:
295
+ mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
296
+ downsamples.append(Resample(out_dim, mode=mode))
297
+ scale /= 2.0
298
+ self.downsamples = nn.Sequential(*downsamples)
299
+
300
+ # middle blocks
301
+ self.middle = nn.Sequential(
302
+ ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), ResidualBlock(out_dim, out_dim, dropout)
303
+ )
304
+
305
+ # output blocks
306
+ self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, z_dim, 3, padding=1))
307
+
308
+ self.cache_device = None
309
+
310
+ def set_cache_device(self, device):
311
+ self.cache_device = device
312
+
313
+ # set cache device for all layers
314
+ for layer in self.downsamples + self.middle + self.head:
315
+ if isinstance(layer, Resample) or isinstance(layer, ResidualBlock):
316
+ layer.set_cache_device(device)
317
+
318
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
319
+ cache_device = self.cache_device if self.cache_device is not None else x.device
320
+
321
+ if feat_cache is not None:
322
+ idx = feat_idx[0]
323
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
324
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
325
+ # cache last frame of last two chunk
326
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
327
+ x = self.conv1(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
328
+ feat_cache[idx] = cache_x
329
+ feat_idx[0] += 1
330
+ else:
331
+ x = self.conv1(x)
332
+
333
+ ## downsamples
334
+ for layer in self.downsamples:
335
+ if feat_cache is not None:
336
+ x = layer(x, feat_cache, feat_idx)
337
+ else:
338
+ x = layer(x)
339
+
340
+ ## middle
341
+ for layer in self.middle:
342
+ if isinstance(layer, ResidualBlock) and feat_cache is not None:
343
+ x = layer(x, feat_cache, feat_idx)
344
+ else:
345
+ x = layer(x)
346
+
347
+ ## head
348
+ for layer in self.head:
349
+ if isinstance(layer, CausalConv3d) and feat_cache is not None:
350
+ idx = feat_idx[0]
351
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
352
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
353
+ # cache last frame of last two chunk
354
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
355
+ x = layer(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
356
+ feat_cache[idx] = cache_x
357
+ feat_idx[0] += 1
358
+ else:
359
+ x = layer(x)
360
+ return x
361
+
362
+
363
+ class Decoder3d(nn.Module):
364
+
365
+ def __init__(
366
+ self,
367
+ dim=128,
368
+ z_dim=4,
369
+ dim_mult=[1, 2, 4, 4],
370
+ num_res_blocks=2,
371
+ attn_scales=[],
372
+ temperal_upsample=[False, True, True],
373
+ dropout=0.0,
374
+ ):
375
+ super().__init__()
376
+ self.dim = dim
377
+ self.z_dim = z_dim
378
+ self.dim_mult = dim_mult
379
+ self.num_res_blocks = num_res_blocks
380
+ self.attn_scales = attn_scales
381
+ self.temperal_upsample = temperal_upsample
382
+
383
+ # dimensions
384
+ dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
385
+ scale = 1.0 / 2 ** (len(dim_mult) - 2)
386
+
387
+ # init block
388
+ self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
389
+
390
+ # middle blocks
391
+ self.middle = nn.Sequential(
392
+ ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), ResidualBlock(dims[0], dims[0], dropout)
393
+ )
394
+
395
+ # upsample blocks
396
+ upsamples = []
397
+ for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
398
+ # residual (+attention) blocks
399
+ if i == 1 or i == 2 or i == 3:
400
+ in_dim = in_dim // 2
401
+ for _ in range(num_res_blocks + 1):
402
+ upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
403
+ if scale in attn_scales:
404
+ upsamples.append(AttentionBlock(out_dim))
405
+ in_dim = out_dim
406
+
407
+ # upsample block
408
+ if i != len(dim_mult) - 1:
409
+ mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
410
+ upsamples.append(Resample(out_dim, mode=mode))
411
+ scale *= 2.0
412
+ self.upsamples = nn.Sequential(*upsamples)
413
+
414
+ # output blocks
415
+ self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, 3, 3, padding=1))
416
+
417
+ self.cache_device = None
418
+
419
+ def set_cache_device(self, device):
420
+ self.cache_device = device
421
+
422
+ # set cache device for all layers
423
+ for layer in self.middle + self.upsamples + self.head:
424
+ if isinstance(layer, Resample) or isinstance(layer, ResidualBlock):
425
+ layer.set_cache_device(device)
426
+
427
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
428
+ cache_device = self.cache_device if self.cache_device is not None else x.device
429
+
430
+ ## conv1
431
+ if feat_cache is not None:
432
+ idx = feat_idx[0]
433
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
434
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
435
+ # cache last frame of last two chunk
436
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
437
+ x = self.conv1(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
438
+ feat_cache[idx] = cache_x
439
+ feat_idx[0] += 1
440
+ else:
441
+ x = self.conv1(x)
442
+
443
+ ## middle
444
+ for layer in self.middle:
445
+ if isinstance(layer, ResidualBlock) and feat_cache is not None:
446
+ x = layer(x, feat_cache, feat_idx)
447
+ else:
448
+ x = layer(x)
449
+
450
+ ## upsamples
451
+ for layer in self.upsamples:
452
+ if feat_cache is not None:
453
+ x = layer(x, feat_cache, feat_idx)
454
+ else:
455
+ x = layer(x)
456
+
457
+ ## head
458
+ for layer in self.head:
459
+ if isinstance(layer, CausalConv3d) and feat_cache is not None:
460
+ idx = feat_idx[0]
461
+ cache_x = x[:, :, -CACHE_T:, :, :].clone().to(cache_device)
462
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
463
+ # cache last frame of last two chunk
464
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
465
+ x = layer(x, feat_cache[idx].to(x.device) if feat_cache[idx] is not None else None)
466
+ feat_cache[idx] = cache_x
467
+ feat_idx[0] += 1
468
+ else:
469
+ x = layer(x)
470
+ return x
471
+
472
+
473
+ def count_conv3d(model):
474
+ count = 0
475
+ for m in model.modules():
476
+ if isinstance(m, CausalConv3d):
477
+ count += 1
478
+ return count
479
+
480
+
481
+ class WanVAE_(nn.Module):
482
+
483
+ def __init__(
484
+ self,
485
+ dim=128,
486
+ z_dim=4,
487
+ dim_mult=[1, 2, 4, 4],
488
+ num_res_blocks=2,
489
+ attn_scales=[],
490
+ temperal_downsample=[True, True, False],
491
+ dropout=0.0,
492
+ ):
493
+ super().__init__()
494
+ self.dim = dim
495
+ self.z_dim = z_dim
496
+ self.dim_mult = dim_mult
497
+ self.num_res_blocks = num_res_blocks
498
+ self.attn_scales = attn_scales
499
+ self.temperal_downsample = temperal_downsample
500
+ self.temperal_upsample = temperal_downsample[::-1]
501
+
502
+ # modules
503
+ self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout)
504
+ self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
505
+ self.conv2 = CausalConv3d(z_dim, z_dim, 1)
506
+ self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout)
507
+
508
+ self.cache_device = None
509
+
510
+ @property
511
+ def dtype(self):
512
+ return self.conv1.weight.dtype
513
+
514
+ @property
515
+ def device(self):
516
+ return self.conv1.weight.device
517
+
518
+ def set_cache_device(self, device):
519
+ # set cache device
520
+ self.cache_device = device
521
+ self.encoder.set_cache_device(device)
522
+ self.decoder.set_cache_device(device)
523
+
524
+ def forward(self, x):
525
+ mu, log_var = self.encode(x)
526
+ z = self.reparameterize(mu, log_var)
527
+ x_recon = self.decode(z)
528
+ return x_recon, mu, log_var
529
+
530
+ def encode(self, x, scale):
531
+ self.clear_cache()
532
+ ## cache
533
+ t = x.shape[2]
534
+ iter_ = 1 + (t - 1) // 4
535
+ # ## 对encode输入的x,按时间拆分为1、4、4、4....
536
+
537
+ # if self.cache_device is None:
538
+ for i in range(iter_):
539
+ self._enc_conv_idx = [0]
540
+ if i == 0:
541
+ out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
542
+ else:
543
+ out_ = self.encoder(
544
+ x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx
545
+ )
546
+ out = torch.cat([out, out_], 2)
547
+ # else:
548
+ # # VRAM optimization
549
+ # device = x.device
550
+ # clean_memory_on_device(device)
551
+ # outs = []
552
+ # for i in range(iter_):
553
+ # self._enc_conv_idx = [0]
554
+ # if i == 0:
555
+ # out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
556
+ # else:
557
+ # out = self.encoder(
558
+ # x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx
559
+ # )
560
+ # outs.append(out.to(self.cache_device))
561
+ # out = torch.cat(outs, 2).to(device)
562
+ mu, log_var = self.conv1(out).chunk(2, dim=1)
563
+ if isinstance(scale[0], torch.Tensor):
564
+ mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
565
+ else:
566
+ mu = (mu - scale[0]) * scale[1]
567
+ self.clear_cache()
568
+ return mu
569
+
570
+ def decode(self, z, scale):
571
+ self.clear_cache()
572
+ # z: [b,c,t,h,w]
573
+ if isinstance(scale[0], torch.Tensor):
574
+ z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
575
+ else:
576
+ z = z / scale[1] + scale[0]
577
+ iter_ = z.shape[2]
578
+ x = self.conv2(z)
579
+
580
+ # if self.cache_device is None:
581
+ for i in range(iter_):
582
+ self._conv_idx = [0]
583
+ if i == 0:
584
+ out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
585
+ else:
586
+ out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
587
+ out = torch.cat([out, out_], 2)
588
+ # else:
589
+ # # VRAM optimization
590
+ # device = z.device
591
+ # x = x.to("cpu")
592
+ # clean_memory_on_device(device)
593
+ # outs = []
594
+ # for i in range(iter_):
595
+ # self._conv_idx = [0]
596
+ # out = self.decoder(x[:, :, i : i + 1, :, :].to(device), feat_cache=self._feat_map, feat_idx=self._conv_idx).to(
597
+ # self.cache_device
598
+ # )
599
+ # outs.append(out)
600
+ # out = torch.cat(outs, 2) # on cache_device
601
+ self.clear_cache()
602
+ return out
603
+
604
+ def reparameterize(self, mu, log_var):
605
+ std = torch.exp(0.5 * log_var)
606
+ eps = torch.randn_like(std)
607
+ return eps * std + mu
608
+
609
+ def sample(self, imgs, deterministic=False):
610
+ mu, log_var = self.encode(imgs)
611
+ if deterministic:
612
+ return mu
613
+ std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
614
+ return mu + std * torch.randn_like(std)
615
+
616
+ def clear_cache(self):
617
+ self._conv_num = count_conv3d(self.decoder)
618
+ self._conv_idx = [0]
619
+ self._feat_map = [None] * self._conv_num
620
+ # cache encode
621
+ self._enc_conv_num = count_conv3d(self.encoder)
622
+ self._enc_conv_idx = [0]
623
+ self._enc_feat_map = [None] * self._enc_conv_num
624
+
625
+
626
+ def _video_vae(pretrained_path=None, z_dim=None, device="cpu", **kwargs):
627
+ """
628
+ Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
629
+ """
630
+ # params
631
+ cfg = dict(
632
+ dim=96,
633
+ z_dim=z_dim,
634
+ dim_mult=[1, 2, 4, 4],
635
+ num_res_blocks=2,
636
+ attn_scales=[],
637
+ temperal_downsample=[False, True, True],
638
+ dropout=0.0,
639
+ )
640
+ cfg.update(**kwargs)
641
+
642
+ # init model
643
+ with torch.device("meta"):
644
+ model = WanVAE_(**cfg)
645
+
646
+ # load checkpoint
647
+ logging.info(f"loading {pretrained_path}")
648
+ if os.path.splitext(pretrained_path)[-1] == ".safetensors":
649
+ sd = load_file(pretrained_path)
650
+ model.load_state_dict(sd, strict=False, assign=True)
651
+ else:
652
+ model.load_state_dict(torch.load(pretrained_path, map_location=device, weights_only=True), assign=True)
653
+
654
+ return model
655
+
656
+
657
+ class WanVAE:
658
+
659
+ def __init__(self, z_dim=16, vae_path="cache/vae_step_411000.pth", dtype=torch.float, device="cuda", cache_device=None):
660
+ self.dtype = dtype
661
+ self.device = device
662
+
663
+ mean = [
664
+ -0.7571,
665
+ -0.7089,
666
+ -0.9113,
667
+ 0.1075,
668
+ -0.1745,
669
+ 0.9653,
670
+ -0.1517,
671
+ 1.5508,
672
+ 0.4134,
673
+ -0.0715,
674
+ 0.5517,
675
+ -0.3632,
676
+ -0.1922,
677
+ -0.9497,
678
+ 0.2503,
679
+ -0.2921,
680
+ ]
681
+ std = [
682
+ 2.8184,
683
+ 1.4541,
684
+ 2.3275,
685
+ 2.6558,
686
+ 1.2196,
687
+ 1.7708,
688
+ 2.6052,
689
+ 2.0743,
690
+ 3.2687,
691
+ 2.1526,
692
+ 2.8652,
693
+ 1.5579,
694
+ 1.6382,
695
+ 1.1253,
696
+ 2.8251,
697
+ 1.9160,
698
+ ]
699
+ self.mean = torch.tensor(mean, dtype=dtype, device=device)
700
+ self.std = torch.tensor(std, dtype=dtype, device=device)
701
+ self.scale = [self.mean, 1.0 / self.std]
702
+
703
+ # init model
704
+ self.model = (
705
+ _video_vae(
706
+ pretrained_path=vae_path,
707
+ z_dim=z_dim,
708
+ )
709
+ .eval()
710
+ .requires_grad_(False)
711
+ .to(device, dtype=dtype)
712
+ )
713
+ if cache_device is not None:
714
+ self.model.set_cache_device(torch.device(cache_device))
715
+
716
+ def to_device(self, device):
717
+ self.device = device
718
+ self.model.to(device)
719
+ self.mean = self.mean.to(device)
720
+ self.std = self.std.to(device)
721
+ self.scale = [t.to(device) for t in self.scale]
722
+
723
+ def to_dtype(self, dtype):
724
+ self.dtype = dtype
725
+ self.model.to(dtype=dtype)
726
+ self.mean = self.mean.to(dtype)
727
+ self.std = self.std.to(dtype)
728
+ self.scale = [t.to(dtype) for t in self.scale]
729
+
730
+ def eval(self):
731
+ self.model.eval()
732
+
733
+ def train(self, mode: bool = True):
734
+ self.model.train(mode)
735
+
736
+ def requires_grad_(self, requires_grad: bool = True):
737
+ self.model.requires_grad_(requires_grad)
738
+
739
+ def to(self, device_or_dtype: Union[torch.device, torch.dtype, str], dtype: Optional[torch.dtype] = None):
740
+ """
741
+ Add nn.Module.to() support for device and dtype.
742
+ """
743
+ if isinstance(device_or_dtype, str) or isinstance(device_or_dtype, torch.device):
744
+ self.to_device(device_or_dtype)
745
+ else:
746
+ self.to_dtype(device_or_dtype)
747
+
748
+ if dtype is not None:
749
+ self.to_dtype(dtype)
750
+
751
+ def encode(self, videos):
752
+ """
753
+ videos: A list of videos each with shape [C, T, H, W].
754
+ """
755
+ # with amp.autocast(dtype=self.dtype):
756
+ return [self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos]
757
+
758
+ def decode(self, zs):
759
+ # with amp.autocast(dtype=self.dtype):
760
+ return [self.model.decode(u.unsqueeze(0), self.scale).float().clamp_(-1, 1).squeeze(0) for u in zs]
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/modules/xlm_roberta.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from transformers.models.xlm_roberta.modeling_xlm_roberta
2
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ __all__ = ['XLMRoberta', 'xlm_roberta_large']
8
+
9
+
10
+ class SelfAttention(nn.Module):
11
+
12
+ def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5):
13
+ assert dim % num_heads == 0
14
+ super().__init__()
15
+ self.dim = dim
16
+ self.num_heads = num_heads
17
+ self.head_dim = dim // num_heads
18
+ self.eps = eps
19
+
20
+ # layers
21
+ self.q = nn.Linear(dim, dim)
22
+ self.k = nn.Linear(dim, dim)
23
+ self.v = nn.Linear(dim, dim)
24
+ self.o = nn.Linear(dim, dim)
25
+ self.dropout = nn.Dropout(dropout)
26
+
27
+ def forward(self, x, mask):
28
+ """
29
+ x: [B, L, C].
30
+ """
31
+ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
32
+
33
+ # compute query, key, value
34
+ q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
35
+ k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
36
+ v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
37
+
38
+ # compute attention
39
+ p = self.dropout.p if self.training else 0.0
40
+ x = F.scaled_dot_product_attention(q, k, v, mask, p)
41
+ x = x.permute(0, 2, 1, 3).reshape(b, s, c)
42
+
43
+ # output
44
+ x = self.o(x)
45
+ x = self.dropout(x)
46
+ return x
47
+
48
+
49
+ class AttentionBlock(nn.Module):
50
+
51
+ def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5):
52
+ super().__init__()
53
+ self.dim = dim
54
+ self.num_heads = num_heads
55
+ self.post_norm = post_norm
56
+ self.eps = eps
57
+
58
+ # layers
59
+ self.attn = SelfAttention(dim, num_heads, dropout, eps)
60
+ self.norm1 = nn.LayerNorm(dim, eps=eps)
61
+ self.ffn = nn.Sequential(
62
+ nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim),
63
+ nn.Dropout(dropout))
64
+ self.norm2 = nn.LayerNorm(dim, eps=eps)
65
+
66
+ def forward(self, x, mask):
67
+ if self.post_norm:
68
+ x = self.norm1(x + self.attn(x, mask))
69
+ x = self.norm2(x + self.ffn(x))
70
+ else:
71
+ x = x + self.attn(self.norm1(x), mask)
72
+ x = x + self.ffn(self.norm2(x))
73
+ return x
74
+
75
+
76
+ class XLMRoberta(nn.Module):
77
+ """
78
+ XLMRobertaModel with no pooler and no LM head.
79
+ """
80
+
81
+ def __init__(self,
82
+ vocab_size=250002,
83
+ max_seq_len=514,
84
+ type_size=1,
85
+ pad_id=1,
86
+ dim=1024,
87
+ num_heads=16,
88
+ num_layers=24,
89
+ post_norm=True,
90
+ dropout=0.1,
91
+ eps=1e-5):
92
+ super().__init__()
93
+ self.vocab_size = vocab_size
94
+ self.max_seq_len = max_seq_len
95
+ self.type_size = type_size
96
+ self.pad_id = pad_id
97
+ self.dim = dim
98
+ self.num_heads = num_heads
99
+ self.num_layers = num_layers
100
+ self.post_norm = post_norm
101
+ self.eps = eps
102
+
103
+ # embeddings
104
+ self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id)
105
+ self.type_embedding = nn.Embedding(type_size, dim)
106
+ self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id)
107
+ self.dropout = nn.Dropout(dropout)
108
+
109
+ # blocks
110
+ self.blocks = nn.ModuleList([
111
+ AttentionBlock(dim, num_heads, post_norm, dropout, eps)
112
+ for _ in range(num_layers)
113
+ ])
114
+
115
+ # norm layer
116
+ self.norm = nn.LayerNorm(dim, eps=eps)
117
+
118
+ def forward(self, ids):
119
+ """
120
+ ids: [B, L] of torch.LongTensor.
121
+ """
122
+ b, s = ids.shape
123
+ mask = ids.ne(self.pad_id).long()
124
+
125
+ # embeddings
126
+ x = self.token_embedding(ids) + \
127
+ self.type_embedding(torch.zeros_like(ids)) + \
128
+ self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask)
129
+ if self.post_norm:
130
+ x = self.norm(x)
131
+ x = self.dropout(x)
132
+
133
+ # blocks
134
+ mask = torch.where(
135
+ mask.view(b, 1, 1, s).gt(0), 0.0,
136
+ torch.finfo(x.dtype).min)
137
+ for block in self.blocks:
138
+ x = block(x, mask)
139
+
140
+ # output
141
+ if not self.post_norm:
142
+ x = self.norm(x)
143
+ return x
144
+
145
+
146
+ def xlm_roberta_large(pretrained=False,
147
+ return_tokenizer=False,
148
+ device='cpu',
149
+ **kwargs):
150
+ """
151
+ XLMRobertaLarge adapted from Huggingface.
152
+ """
153
+ # params
154
+ cfg = dict(
155
+ vocab_size=250002,
156
+ max_seq_len=514,
157
+ type_size=1,
158
+ pad_id=1,
159
+ dim=1024,
160
+ num_heads=16,
161
+ num_layers=24,
162
+ post_norm=True,
163
+ dropout=0.1,
164
+ eps=1e-5)
165
+ cfg.update(**kwargs)
166
+
167
+ # init a model on device
168
+ with torch.device(device):
169
+ model = XLMRoberta(**cfg)
170
+ return model
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from musubi_tuner.wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
2
+ retrieve_timesteps)
3
+ from musubi_tuner.wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
4
+
5
+ __all__ = [
6
+ 'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
7
+ 'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler'
8
+ ]
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (518 Bytes). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/fm_solvers.cpython-312.pyc ADDED
Binary file (42.7 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/__pycache__/fm_solvers_unipc.cpython-312.pyc ADDED
Binary file (35.2 kB). View file
 
exp_code/1_benchmark/musubi-tuner/src/musubi_tuner/wan/utils/fm_solvers.py ADDED
@@ -0,0 +1,857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
2
+ # Convert dpm solver for flow matching
3
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
4
+
5
+ import inspect
6
+ import math
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ import numpy as np
10
+ import torch
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
13
+ SchedulerMixin,
14
+ SchedulerOutput)
15
+ from diffusers.utils import deprecate, is_scipy_available
16
+ from diffusers.utils.torch_utils import randn_tensor
17
+
18
+ if is_scipy_available():
19
+ pass
20
+
21
+
22
+ def get_sampling_sigmas(sampling_steps, shift):
23
+ sigma = np.linspace(1, 0, sampling_steps + 1)[:sampling_steps]
24
+ sigma = (shift * sigma / (1 + (shift - 1) * sigma))
25
+
26
+ return sigma
27
+
28
+
29
+ def retrieve_timesteps(
30
+ scheduler,
31
+ num_inference_steps=None,
32
+ device=None,
33
+ timesteps=None,
34
+ sigmas=None,
35
+ **kwargs,
36
+ ):
37
+ if timesteps is not None and sigmas is not None:
38
+ raise ValueError(
39
+ "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
40
+ )
41
+ if timesteps is not None:
42
+ accepts_timesteps = "timesteps" in set(
43
+ inspect.signature(scheduler.set_timesteps).parameters.keys())
44
+ if not accepts_timesteps:
45
+ raise ValueError(
46
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
47
+ f" timestep schedules. Please check whether you are using the correct scheduler."
48
+ )
49
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
50
+ timesteps = scheduler.timesteps
51
+ num_inference_steps = len(timesteps)
52
+ elif sigmas is not None:
53
+ accept_sigmas = "sigmas" in set(
54
+ inspect.signature(scheduler.set_timesteps).parameters.keys())
55
+ if not accept_sigmas:
56
+ raise ValueError(
57
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
58
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
59
+ )
60
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
61
+ timesteps = scheduler.timesteps
62
+ num_inference_steps = len(timesteps)
63
+ else:
64
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
65
+ timesteps = scheduler.timesteps
66
+ return timesteps, num_inference_steps
67
+
68
+
69
+ class FlowDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
70
+ """
71
+ `FlowDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
72
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
73
+ methods the library implements for all schedulers such as loading and saving.
74
+ Args:
75
+ num_train_timesteps (`int`, defaults to 1000):
76
+ The number of diffusion steps to train the model. This determines the resolution of the diffusion process.
77
+ solver_order (`int`, defaults to 2):
78
+ The DPMSolver order which can be `1`, `2`, or `3`. It is recommended to use `solver_order=2` for guided
79
+ sampling, and `solver_order=3` for unconditional sampling. This affects the number of model outputs stored
80
+ and used in multistep updates.
81
+ prediction_type (`str`, defaults to "flow_prediction"):
82
+ Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
83
+ the flow of the diffusion process.
84
+ shift (`float`, *optional*, defaults to 1.0):
85
+ A factor used to adjust the sigmas in the noise schedule. It modifies the step sizes during the sampling
86
+ process.
87
+ use_dynamic_shifting (`bool`, defaults to `False`):
88
+ Whether to apply dynamic shifting to the timesteps based on image resolution. If `True`, the shifting is
89
+ applied on the fly.
90
+ thresholding (`bool`, defaults to `False`):
91
+ Whether to use the "dynamic thresholding" method. This method adjusts the predicted sample to prevent
92
+ saturation and improve photorealism.
93
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
94
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
95
+ sample_max_value (`float`, defaults to 1.0):
96
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
97
+ `algorithm_type="dpmsolver++"`.
98
+ algorithm_type (`str`, defaults to `dpmsolver++`):
99
+ Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
100
+ `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
101
+ paper, and the `dpmsolver++` type implements the algorithms in the
102
+ [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
103
+ `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
104
+ solver_type (`str`, defaults to `midpoint`):
105
+ Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
106
+ sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
107
+ lower_order_final (`bool`, defaults to `True`):
108
+ Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
109
+ stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
110
+ euler_at_final (`bool`, defaults to `False`):
111
+ Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
112
+ richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
113
+ steps, but sometimes may result in blurring.
114
+ final_sigmas_type (`str`, *optional*, defaults to "zero"):
115
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
116
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
117
+ lambda_min_clipped (`float`, defaults to `-inf`):
118
+ Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
119
+ cosine (`squaredcos_cap_v2`) noise schedule.
120
+ variance_type (`str`, *optional*):
121
+ Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
122
+ contains the predicted Gaussian variance.
123
+ """
124
+
125
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
126
+ order = 1
127
+
128
+ @register_to_config
129
+ def __init__(
130
+ self,
131
+ num_train_timesteps: int = 1000,
132
+ solver_order: int = 2,
133
+ prediction_type: str = "flow_prediction",
134
+ shift: Optional[float] = 1.0,
135
+ use_dynamic_shifting=False,
136
+ thresholding: bool = False,
137
+ dynamic_thresholding_ratio: float = 0.995,
138
+ sample_max_value: float = 1.0,
139
+ algorithm_type: str = "dpmsolver++",
140
+ solver_type: str = "midpoint",
141
+ lower_order_final: bool = True,
142
+ euler_at_final: bool = False,
143
+ final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
144
+ lambda_min_clipped: float = -float("inf"),
145
+ variance_type: Optional[str] = None,
146
+ invert_sigmas: bool = False,
147
+ ):
148
+ if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
149
+ deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
150
+ deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0",
151
+ deprecation_message)
152
+
153
+ # settings for DPM-Solver
154
+ if algorithm_type not in [
155
+ "dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"
156
+ ]:
157
+ if algorithm_type == "deis":
158
+ self.register_to_config(algorithm_type="dpmsolver++")
159
+ else:
160
+ raise NotImplementedError(
161
+ f"{algorithm_type} is not implemented for {self.__class__}")
162
+
163
+ if solver_type not in ["midpoint", "heun"]:
164
+ if solver_type in ["logrho", "bh1", "bh2"]:
165
+ self.register_to_config(solver_type="midpoint")
166
+ else:
167
+ raise NotImplementedError(
168
+ f"{solver_type} is not implemented for {self.__class__}")
169
+
170
+ if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"
171
+ ] and final_sigmas_type == "zero":
172
+ raise ValueError(
173
+ f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
174
+ )
175
+
176
+ # setable values
177
+ self.num_inference_steps = None
178
+ alphas = np.linspace(1, 1 / num_train_timesteps,
179
+ num_train_timesteps)[::-1].copy()
180
+ sigmas = 1.0 - alphas
181
+ sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
182
+
183
+ if not use_dynamic_shifting:
184
+ # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
185
+ sigmas = shift * sigmas / (1 +
186
+ (shift - 1) * sigmas) # pyright: ignore
187
+
188
+ self.sigmas = sigmas
189
+ self.timesteps = sigmas * num_train_timesteps
190
+
191
+ self.model_outputs = [None] * solver_order
192
+ self.lower_order_nums = 0
193
+ self._step_index = None
194
+ self._begin_index = None
195
+
196
+ # self.sigmas = self.sigmas.to(
197
+ # "cpu") # to avoid too much CPU/GPU communication
198
+ self.sigma_min = self.sigmas[-1].item()
199
+ self.sigma_max = self.sigmas[0].item()
200
+
201
+ @property
202
+ def step_index(self):
203
+ """
204
+ The index counter for current timestep. It will increase 1 after each scheduler step.
205
+ """
206
+ return self._step_index
207
+
208
+ @property
209
+ def begin_index(self):
210
+ """
211
+ The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
212
+ """
213
+ return self._begin_index
214
+
215
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
216
+ def set_begin_index(self, begin_index: int = 0):
217
+ """
218
+ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
219
+ Args:
220
+ begin_index (`int`):
221
+ The begin index for the scheduler.
222
+ """
223
+ self._begin_index = begin_index
224
+
225
+ # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
226
+ def set_timesteps(
227
+ self,
228
+ num_inference_steps: Union[int, None] = None,
229
+ device: Union[str, torch.device] = None,
230
+ sigmas: Optional[List[float]] = None,
231
+ mu: Optional[Union[float, None]] = None,
232
+ shift: Optional[Union[float, None]] = None,
233
+ ):
234
+ """
235
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
236
+ Args:
237
+ num_inference_steps (`int`):
238
+ Total number of the spacing of the time steps.
239
+ device (`str` or `torch.device`, *optional*):
240
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
241
+ """
242
+
243
+ if self.config.use_dynamic_shifting and mu is None:
244
+ raise ValueError(
245
+ " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
246
+ )
247
+
248
+ if sigmas is None:
249
+ sigmas = np.linspace(self.sigma_max, self.sigma_min,
250
+ num_inference_steps +
251
+ 1).copy()[:-1] # pyright: ignore
252
+
253
+ if self.config.use_dynamic_shifting:
254
+ sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
255
+ else:
256
+ if shift is None:
257
+ shift = self.config.shift
258
+ sigmas = shift * sigmas / (1 +
259
+ (shift - 1) * sigmas) # pyright: ignore
260
+
261
+ if self.config.final_sigmas_type == "sigma_min":
262
+ sigma_last = ((1 - self.alphas_cumprod[0]) /
263
+ self.alphas_cumprod[0])**0.5
264
+ elif self.config.final_sigmas_type == "zero":
265
+ sigma_last = 0
266
+ else:
267
+ raise ValueError(
268
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
269
+ )
270
+
271
+ timesteps = sigmas * self.config.num_train_timesteps
272
+ sigmas = np.concatenate([sigmas, [sigma_last]
273
+ ]).astype(np.float32) # pyright: ignore
274
+
275
+ self.sigmas = torch.from_numpy(sigmas)
276
+ self.timesteps = torch.from_numpy(timesteps).to(
277
+ device=device, dtype=torch.int64)
278
+
279
+ self.num_inference_steps = len(timesteps)
280
+
281
+ self.model_outputs = [
282
+ None,
283
+ ] * self.config.solver_order
284
+ self.lower_order_nums = 0
285
+
286
+ self._step_index = None
287
+ self._begin_index = None
288
+ # self.sigmas = self.sigmas.to(
289
+ # "cpu") # to avoid too much CPU/GPU communication
290
+
291
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
292
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
293
+ """
294
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
295
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
296
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
297
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
298
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
299
+ https://arxiv.org/abs/2205.11487
300
+ """
301
+ dtype = sample.dtype
302
+ batch_size, channels, *remaining_dims = sample.shape
303
+
304
+ if dtype not in (torch.float32, torch.float64):
305
+ sample = sample.float(
306
+ ) # upcast for quantile calculation, and clamp not implemented for cpu half
307
+
308
+ # Flatten sample for doing quantile calculation along each image
309
+ sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
310
+
311
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
312
+
313
+ s = torch.quantile(
314
+ abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
315
+ s = torch.clamp(
316
+ s, min=1, max=self.config.sample_max_value
317
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
318
+ s = s.unsqueeze(
319
+ 1) # (batch_size, 1) because clamp will broadcast along dim=0
320
+ sample = torch.clamp(
321
+ sample, -s, s
322
+ ) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
323
+
324
+ sample = sample.reshape(batch_size, channels, *remaining_dims)
325
+ sample = sample.to(dtype)
326
+
327
+ return sample
328
+
329
+ # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
330
+ def _sigma_to_t(self, sigma):
331
+ return sigma * self.config.num_train_timesteps
332
+
333
+ def _sigma_to_alpha_sigma_t(self, sigma):
334
+ return 1 - sigma, sigma
335
+
336
+ # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
337
+ def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
338
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
339
+
340
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
341
+ def convert_model_output(
342
+ self,
343
+ model_output: torch.Tensor,
344
+ *args,
345
+ sample: torch.Tensor = None,
346
+ **kwargs,
347
+ ) -> torch.Tensor:
348
+ """
349
+ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
350
+ designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
351
+ integral of the data prediction model.
352
+ <Tip>
353
+ The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
354
+ prediction and data prediction models.
355
+ </Tip>
356
+ Args:
357
+ model_output (`torch.Tensor`):
358
+ The direct output from the learned diffusion model.
359
+ sample (`torch.Tensor`):
360
+ A current instance of a sample created by the diffusion process.
361
+ Returns:
362
+ `torch.Tensor`:
363
+ The converted model output.
364
+ """
365
+ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
366
+ if sample is None:
367
+ if len(args) > 1:
368
+ sample = args[1]
369
+ else:
370
+ raise ValueError(
371
+ "missing `sample` as a required keyward argument")
372
+ if timestep is not None:
373
+ deprecate(
374
+ "timesteps",
375
+ "1.0.0",
376
+ "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
377
+ )
378
+
379
+ # DPM-Solver++ needs to solve an integral of the data prediction model.
380
+ if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
381
+ if self.config.prediction_type == "flow_prediction":
382
+ sigma_t = self.sigmas[self.step_index]
383
+ x0_pred = sample - sigma_t * model_output
384
+ else:
385
+ raise ValueError(
386
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
387
+ " `v_prediction`, or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
388
+ )
389
+
390
+ if self.config.thresholding:
391
+ x0_pred = self._threshold_sample(x0_pred)
392
+
393
+ return x0_pred
394
+
395
+ # DPM-Solver needs to solve an integral of the noise prediction model.
396
+ elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
397
+ if self.config.prediction_type == "flow_prediction":
398
+ sigma_t = self.sigmas[self.step_index]
399
+ epsilon = sample - (1 - sigma_t) * model_output
400
+ else:
401
+ raise ValueError(
402
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
403
+ " `v_prediction` or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
404
+ )
405
+
406
+ if self.config.thresholding:
407
+ sigma_t = self.sigmas[self.step_index]
408
+ x0_pred = sample - sigma_t * model_output
409
+ x0_pred = self._threshold_sample(x0_pred)
410
+ epsilon = model_output + x0_pred
411
+
412
+ return epsilon
413
+
414
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
415
+ def dpm_solver_first_order_update(
416
+ self,
417
+ model_output: torch.Tensor,
418
+ *args,
419
+ sample: torch.Tensor = None,
420
+ noise: Optional[torch.Tensor] = None,
421
+ **kwargs,
422
+ ) -> torch.Tensor:
423
+ """
424
+ One step for the first-order DPMSolver (equivalent to DDIM).
425
+ Args:
426
+ model_output (`torch.Tensor`):
427
+ The direct output from the learned diffusion model.
428
+ sample (`torch.Tensor`):
429
+ A current instance of a sample created by the diffusion process.
430
+ Returns:
431
+ `torch.Tensor`:
432
+ The sample tensor at the previous timestep.
433
+ """
434
+ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
435
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
436
+ "prev_timestep", None)
437
+ if sample is None:
438
+ if len(args) > 2:
439
+ sample = args[2]
440
+ else:
441
+ raise ValueError(
442
+ " missing `sample` as a required keyward argument")
443
+ if timestep is not None:
444
+ deprecate(
445
+ "timesteps",
446
+ "1.0.0",
447
+ "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
448
+ )
449
+
450
+ if prev_timestep is not None:
451
+ deprecate(
452
+ "prev_timestep",
453
+ "1.0.0",
454
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
455
+ )
456
+
457
+ sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[
458
+ self.step_index] # pyright: ignore
459
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
460
+ alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
461
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
462
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
463
+
464
+ h = lambda_t - lambda_s
465
+ if self.config.algorithm_type == "dpmsolver++":
466
+ x_t = (sigma_t /
467
+ sigma_s) * sample - (alpha_t *
468
+ (torch.exp(-h) - 1.0)) * model_output
469
+ elif self.config.algorithm_type == "dpmsolver":
470
+ x_t = (alpha_t /
471
+ alpha_s) * sample - (sigma_t *
472
+ (torch.exp(h) - 1.0)) * model_output
473
+ elif self.config.algorithm_type == "sde-dpmsolver++":
474
+ assert noise is not None
475
+ x_t = ((sigma_t / sigma_s * torch.exp(-h)) * sample +
476
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output +
477
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
478
+ elif self.config.algorithm_type == "sde-dpmsolver":
479
+ assert noise is not None
480
+ x_t = ((alpha_t / alpha_s) * sample - 2.0 *
481
+ (sigma_t * (torch.exp(h) - 1.0)) * model_output +
482
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
483
+ return x_t # pyright: ignore
484
+
485
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
486
+ def multistep_dpm_solver_second_order_update(
487
+ self,
488
+ model_output_list: List[torch.Tensor],
489
+ *args,
490
+ sample: torch.Tensor = None,
491
+ noise: Optional[torch.Tensor] = None,
492
+ **kwargs,
493
+ ) -> torch.Tensor:
494
+ """
495
+ One step for the second-order multistep DPMSolver.
496
+ Args:
497
+ model_output_list (`List[torch.Tensor]`):
498
+ The direct outputs from learned diffusion model at current and latter timesteps.
499
+ sample (`torch.Tensor`):
500
+ A current instance of a sample created by the diffusion process.
501
+ Returns:
502
+ `torch.Tensor`:
503
+ The sample tensor at the previous timestep.
504
+ """
505
+ timestep_list = args[0] if len(args) > 0 else kwargs.pop(
506
+ "timestep_list", None)
507
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
508
+ "prev_timestep", None)
509
+ if sample is None:
510
+ if len(args) > 2:
511
+ sample = args[2]
512
+ else:
513
+ raise ValueError(
514
+ " missing `sample` as a required keyward argument")
515
+ if timestep_list is not None:
516
+ deprecate(
517
+ "timestep_list",
518
+ "1.0.0",
519
+ "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
520
+ )
521
+
522
+ if prev_timestep is not None:
523
+ deprecate(
524
+ "prev_timestep",
525
+ "1.0.0",
526
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
527
+ )
528
+
529
+ sigma_t, sigma_s0, sigma_s1 = (
530
+ self.sigmas[self.step_index + 1], # pyright: ignore
531
+ self.sigmas[self.step_index],
532
+ self.sigmas[self.step_index - 1], # pyright: ignore
533
+ )
534
+
535
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
536
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
537
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
538
+
539
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
540
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
541
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
542
+
543
+ m0, m1 = model_output_list[-1], model_output_list[-2]
544
+
545
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
546
+ r0 = h_0 / h
547
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
548
+ if self.config.algorithm_type == "dpmsolver++":
549
+ # See https://arxiv.org/abs/2211.01095 for detailed derivations
550
+ if self.config.solver_type == "midpoint":
551
+ x_t = ((sigma_t / sigma_s0) * sample -
552
+ (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 *
553
+ (alpha_t * (torch.exp(-h) - 1.0)) * D1)
554
+ elif self.config.solver_type == "heun":
555
+ x_t = ((sigma_t / sigma_s0) * sample -
556
+ (alpha_t * (torch.exp(-h) - 1.0)) * D0 +
557
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1)
558
+ elif self.config.algorithm_type == "dpmsolver":
559
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
560
+ if self.config.solver_type == "midpoint":
561
+ x_t = ((alpha_t / alpha_s0) * sample -
562
+ (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 *
563
+ (sigma_t * (torch.exp(h) - 1.0)) * D1)
564
+ elif self.config.solver_type == "heun":
565
+ x_t = ((alpha_t / alpha_s0) * sample -
566
+ (sigma_t * (torch.exp(h) - 1.0)) * D0 -
567
+ (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1)
568
+ elif self.config.algorithm_type == "sde-dpmsolver++":
569
+ assert noise is not None
570
+ if self.config.solver_type == "midpoint":
571
+ x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
572
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 *
573
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 +
574
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
575
+ elif self.config.solver_type == "heun":
576
+ x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
577
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 +
578
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) /
579
+ (-2.0 * h) + 1.0)) * D1 +
580
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
581
+ elif self.config.algorithm_type == "sde-dpmsolver":
582
+ assert noise is not None
583
+ if self.config.solver_type == "midpoint":
584
+ x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
585
+ (sigma_t * (torch.exp(h) - 1.0)) * D0 -
586
+ (sigma_t * (torch.exp(h) - 1.0)) * D1 +
587
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
588
+ elif self.config.solver_type == "heun":
589
+ x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
590
+ (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 *
591
+ (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 +
592
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
593
+ return x_t # pyright: ignore
594
+
595
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
596
+ def multistep_dpm_solver_third_order_update(
597
+ self,
598
+ model_output_list: List[torch.Tensor],
599
+ *args,
600
+ sample: torch.Tensor = None,
601
+ **kwargs,
602
+ ) -> torch.Tensor:
603
+ """
604
+ One step for the third-order multistep DPMSolver.
605
+ Args:
606
+ model_output_list (`List[torch.Tensor]`):
607
+ The direct outputs from learned diffusion model at current and latter timesteps.
608
+ sample (`torch.Tensor`):
609
+ A current instance of a sample created by diffusion process.
610
+ Returns:
611
+ `torch.Tensor`:
612
+ The sample tensor at the previous timestep.
613
+ """
614
+
615
+ timestep_list = args[0] if len(args) > 0 else kwargs.pop(
616
+ "timestep_list", None)
617
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
618
+ "prev_timestep", None)
619
+ if sample is None:
620
+ if len(args) > 2:
621
+ sample = args[2]
622
+ else:
623
+ raise ValueError(
624
+ " missing`sample` as a required keyward argument")
625
+ if timestep_list is not None:
626
+ deprecate(
627
+ "timestep_list",
628
+ "1.0.0",
629
+ "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
630
+ )
631
+
632
+ if prev_timestep is not None:
633
+ deprecate(
634
+ "prev_timestep",
635
+ "1.0.0",
636
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
637
+ )
638
+
639
+ sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
640
+ self.sigmas[self.step_index + 1], # pyright: ignore
641
+ self.sigmas[self.step_index],
642
+ self.sigmas[self.step_index - 1], # pyright: ignore
643
+ self.sigmas[self.step_index - 2], # pyright: ignore
644
+ )
645
+
646
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
647
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
648
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
649
+ alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
650
+
651
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
652
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
653
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
654
+ lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
655
+
656
+ m0, m1, m2 = model_output_list[-1], model_output_list[
657
+ -2], model_output_list[-3]
658
+
659
+ h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
660
+ r0, r1 = h_0 / h, h_1 / h
661
+ D0 = m0
662
+ D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
663
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
664
+ D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
665
+ if self.config.algorithm_type == "dpmsolver++":
666
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
667
+ x_t = ((sigma_t / sigma_s0) * sample -
668
+ (alpha_t * (torch.exp(-h) - 1.0)) * D0 +
669
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 -
670
+ (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2)
671
+ elif self.config.algorithm_type == "dpmsolver":
672
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
673
+ x_t = ((alpha_t / alpha_s0) * sample - (sigma_t *
674
+ (torch.exp(h) - 1.0)) * D0 -
675
+ (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 -
676
+ (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2)
677
+ return x_t # pyright: ignore
678
+
679
+ def index_for_timestep(self, timestep, schedule_timesteps=None):
680
+ if schedule_timesteps is None:
681
+ schedule_timesteps = self.timesteps
682
+
683
+ indices = (schedule_timesteps == timestep).nonzero()
684
+
685
+ # The sigma index that is taken for the **very** first `step`
686
+ # is always the second index (or the last index if there is only 1)
687
+ # This way we can ensure we don't accidentally skip a sigma in
688
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
689
+ pos = 1 if len(indices) > 1 else 0
690
+
691
+ return indices[pos].item()
692
+
693
+ def _init_step_index(self, timestep):
694
+ """
695
+ Initialize the step_index counter for the scheduler.
696
+ """
697
+
698
+ if self.begin_index is None:
699
+ if isinstance(timestep, torch.Tensor):
700
+ timestep = timestep.to(self.timesteps.device)
701
+ self._step_index = self.index_for_timestep(timestep)
702
+ else:
703
+ self._step_index = self._begin_index
704
+
705
+ # Modified from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.step
706
+ def step(
707
+ self,
708
+ model_output: torch.Tensor,
709
+ timestep: Union[int, torch.Tensor],
710
+ sample: torch.Tensor,
711
+ generator=None,
712
+ variance_noise: Optional[torch.Tensor] = None,
713
+ return_dict: bool = True,
714
+ ) -> Union[SchedulerOutput, Tuple]:
715
+ """
716
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
717
+ the multistep DPMSolver.
718
+ Args:
719
+ model_output (`torch.Tensor`):
720
+ The direct output from learned diffusion model.
721
+ timestep (`int`):
722
+ The current discrete timestep in the diffusion chain.
723
+ sample (`torch.Tensor`):
724
+ A current instance of a sample created by the diffusion process.
725
+ generator (`torch.Generator`, *optional*):
726
+ A random number generator.
727
+ variance_noise (`torch.Tensor`):
728
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
729
+ itself. Useful for methods such as [`LEdits++`].
730
+ return_dict (`bool`):
731
+ Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
732
+ Returns:
733
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
734
+ If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
735
+ tuple is returned where the first element is the sample tensor.
736
+ """
737
+ if self.num_inference_steps is None:
738
+ raise ValueError(
739
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
740
+ )
741
+
742
+ if self.step_index is None:
743
+ self._init_step_index(timestep)
744
+
745
+ # Improve numerical stability for small number of steps
746
+ lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
747
+ self.config.euler_at_final or
748
+ (self.config.lower_order_final and len(self.timesteps) < 15) or
749
+ self.config.final_sigmas_type == "zero")
750
+ lower_order_second = ((self.step_index == len(self.timesteps) - 2) and
751
+ self.config.lower_order_final and
752
+ len(self.timesteps) < 15)
753
+
754
+ model_output = self.convert_model_output(model_output, sample=sample)
755
+ for i in range(self.config.solver_order - 1):
756
+ self.model_outputs[i] = self.model_outputs[i + 1]
757
+ self.model_outputs[-1] = model_output
758
+
759
+ # Upcast to avoid precision issues when computing prev_sample
760
+ sample = sample.to(torch.float32)
761
+ if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"
762
+ ] and variance_noise is None:
763
+ noise = randn_tensor(
764
+ model_output.shape,
765
+ generator=generator,
766
+ device=model_output.device,
767
+ dtype=torch.float32)
768
+ elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
769
+ noise = variance_noise.to(
770
+ device=model_output.device,
771
+ dtype=torch.float32) # pyright: ignore
772
+ else:
773
+ noise = None
774
+
775
+ if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
776
+ prev_sample = self.dpm_solver_first_order_update(
777
+ model_output, sample=sample, noise=noise)
778
+ elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
779
+ prev_sample = self.multistep_dpm_solver_second_order_update(
780
+ self.model_outputs, sample=sample, noise=noise)
781
+ else:
782
+ prev_sample = self.multistep_dpm_solver_third_order_update(
783
+ self.model_outputs, sample=sample)
784
+
785
+ if self.lower_order_nums < self.config.solver_order:
786
+ self.lower_order_nums += 1
787
+
788
+ # Cast sample back to expected dtype
789
+ prev_sample = prev_sample.to(model_output.dtype)
790
+
791
+ # upon completion increase step index by one
792
+ self._step_index += 1 # pyright: ignore
793
+
794
+ if not return_dict:
795
+ return (prev_sample,)
796
+
797
+ return SchedulerOutput(prev_sample=prev_sample)
798
+
799
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
800
+ def scale_model_input(self, sample: torch.Tensor, *args,
801
+ **kwargs) -> torch.Tensor:
802
+ """
803
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
804
+ current timestep.
805
+ Args:
806
+ sample (`torch.Tensor`):
807
+ The input sample.
808
+ Returns:
809
+ `torch.Tensor`:
810
+ A scaled input sample.
811
+ """
812
+ return sample
813
+
814
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
815
+ def add_noise(
816
+ self,
817
+ original_samples: torch.Tensor,
818
+ noise: torch.Tensor,
819
+ timesteps: torch.IntTensor,
820
+ ) -> torch.Tensor:
821
+ # Make sure sigmas and timesteps have the same device and dtype as original_samples
822
+ sigmas = self.sigmas.to(
823
+ device=original_samples.device, dtype=original_samples.dtype)
824
+ if original_samples.device.type == "mps" and torch.is_floating_point(
825
+ timesteps):
826
+ # mps does not support float64
827
+ schedule_timesteps = self.timesteps.to(
828
+ original_samples.device, dtype=torch.float32)
829
+ timesteps = timesteps.to(
830
+ original_samples.device, dtype=torch.float32)
831
+ else:
832
+ schedule_timesteps = self.timesteps.to(original_samples.device)
833
+ timesteps = timesteps.to(original_samples.device)
834
+
835
+ # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
836
+ if self.begin_index is None:
837
+ step_indices = [
838
+ self.index_for_timestep(t, schedule_timesteps)
839
+ for t in timesteps
840
+ ]
841
+ elif self.step_index is not None:
842
+ # add_noise is called after first denoising step (for inpainting)
843
+ step_indices = [self.step_index] * timesteps.shape[0]
844
+ else:
845
+ # add noise is called before first denoising step to create initial latent(img2img)
846
+ step_indices = [self.begin_index] * timesteps.shape[0]
847
+
848
+ sigma = sigmas[step_indices].flatten()
849
+ while len(sigma.shape) < len(original_samples.shape):
850
+ sigma = sigma.unsqueeze(-1)
851
+
852
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
853
+ noisy_samples = alpha_t * original_samples + sigma_t * noise
854
+ return noisy_samples
855
+
856
+ def __len__(self):
857
+ return self.config.num_train_timesteps