import os os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes" import torch from diffusers import AutoencoderKLHunyuanVideo from diffusers.video_processor import VideoProcessor from diffusers.utils import export_to_video device = "cuda" pretrained_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo" vae = AutoencoderKLHunyuanVideo.from_pretrained( pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.float32, ).to(device) vae.eval() vae.requires_grad_(False) vae.enable_tiling() vae_scale_factor_spatial = vae.spatial_compression_ratio video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial) latents = torch.load('/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/sekai-real-drone/latents_stride1/9F82nRgRthI_0046499_0046799_281_384_640.pt', map_location='cpu', weights_only=False) vae_latents = latents['vae_latent'] / vae.config.scaling_factor # vae_latents = vae_latents.to(device=device, dtype=vae.dtype)[:, :9, :, :] video = vae.decode(vae_latents.unsqueeze(0).to(vae.device), return_dict=False)[0] video = video_processor.postprocess_video(video, output_type="pil") export_to_video(video[0], "output_fp_hv_33.mp4", fps=30) # video[0][0].save("1_0.png") # video[0][-1].save("2_0.png") # first_vae_latents = latents['vae_latent'][:, 0, :, :].unsqueeze(1) / vae.config.scaling_factor # first_vae_latents = first_vae_latents.to(device=device, dtype=vae.dtype) # first_image = vae.decode(first_vae_latents.unsqueeze(0), return_dict=False)[0] # first_image = video_processor.postprocess_video(first_image, output_type="pil")[0][0] # first_image.save("1_1.png") # last_vae_latents = latents['vae_latent'][:, -1, :, :].unsqueeze(1) / vae.config.scaling_factor # last_vae_latents = last_vae_latents.to(device=device, dtype=vae.dtype) # last_image = vae.decode(last_vae_latents.unsqueeze(0), return_dict=False)[0] # last_image = video_processor.postprocess_video(last_image, output_type="pil")[0][0] # last_image.save("2_1.png") # print(f"Max memory: {torch.cuda.max_memory_allocated() / 1024**3:.3f} GB") # import sys # sys.path.append("/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/fp_train/dance_forcing/utils") # from utils_framepack import get_framepack_input_i2v # ( # model_input, # torch.Size([2, 16, 9, 60, 104]) # indices_latents, # torch.Size([2, 9]) # latents_clean, # torch.Size([2, 16, 2, 60, 104]) # indices_clean_latents, # torch.Size([2, 2]) # latents_history_2x, # torch.Size([2, 16, 2, 60, 104]) # indices_latents_history_2x, # torch.Size([2, 2]) # latents_history_4x, # torch.Size([2, 16, 16, 60, 104]) # indices_latents_history_4x, # torch.Size([2, 16]) # section_to_video_idx, # ) = get_framepack_input_i2v( # vae_latents=latents['vae_latent'].unsqueeze(0), # latent_window_size=9, # vanilla_sampling=True, # is_local_flf2v=True, # dtype=torch.bfloat16, # ) # vae_latents_1 = torch.cat([model_input[0:1], model_input[-1:]], dim = 2) # vae_latents_1 = vae_latents_1.to(vae.device, dtype=vae.dtype) / vae.config.scaling_factor # video = vae.decode(vae_latents_1, return_dict=False)[0] # video = video_processor.postprocess_video(video, output_type="pil") # export_to_video(video[0], "output_fp_f1_test_1.mp4", fps=30) # def remove_front_padding(tensor, dim=1): # non_zero_indices = torch.any(tensor != 0, dim=tuple(i for i in range(tensor.ndim) if i != dim)) # first_non_zero = torch.argmax(non_zero_indices.float()) # slices = [slice(None)] * tensor.ndim # slices[dim] = slice(first_non_zero.item(), None) # return tensor[tuple(slices)] # vae_latents_1 = remove_front_padding(torch.cat([latents_history_4x[-1:], latents_history_2x[-1:], latents_clean[-1:][:, :, 0:1,], model_input[-1:], latents_clean[-1:][:, :, 1:,]], dim = 2), dim = 2) # vae_latents_1 = vae_latents_1.to(vae.device, dtype=vae.dtype) / vae.config.scaling_factor # video = vae.decode(vae_latents_1, return_dict=False)[0] # video = video_processor.postprocess_video(video, output_type="pil") # export_to_video(video[0], "output_fp_f1_test_2.mp4", fps=30) # import pdb;pdb.set_trace()