import os import glob import torch import torch.multiprocessing as mp from diffusers import AutoencoderKLHunyuanVideo from diffusers.video_processor import VideoProcessor from diffusers.utils import export_to_video from concurrent.futures import ProcessPoolExecutor import time os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes" def process_files_on_gpu(gpu_id, file_list, pretrained_model_path, output_folder): """在指定GPU上处理文件列表""" device = f"cuda:{gpu_id}" # 初始化VAE模型 vae = AutoencoderKLHunyuanVideo.from_pretrained( pretrained_model_path, subfolder="vae", torch_dtype=torch.float32, ).to(device) vae.eval() vae.requires_grad_(False) vae.enable_tiling() vae_scale_factor_spatial = vae.spatial_compression_ratio video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial) for i, pt_file in enumerate(file_list): try: print(f"GPU {gpu_id} - 正在处理 ({i+1}/{len(file_list)}): {os.path.basename(pt_file)}") # 加载latents latents = torch.load(pt_file, map_location='cpu', weights_only=False) vae_latents = latents['vae_latent'] / vae.config.scaling_factor vae_latents = vae_latents.to(device=device, dtype=vae.dtype) # 解码视频 video = vae.decode(vae_latents.unsqueeze(0), return_dict=False)[0] video = video_processor.postprocess_video(video, output_type="pil") # 生成输出文件名 base_name = os.path.splitext(os.path.basename(pt_file))[0] output_path = os.path.join(output_folder, f"{base_name}.mp4") # 导出视频 export_to_video(video[0], output_path, fps=30) print(f"GPU {gpu_id} - 成功保存: {output_path}") # 清理GPU内存 del latents, vae_latents, video torch.cuda.empty_cache() except Exception as e: print(f"GPU {gpu_id} - 处理文件 {pt_file} 时出错: {str(e)}") continue print(f"GPU {gpu_id} - 完成所有分配的文件处理!") def main(): # 设置路径 pretrained_model_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo" input_folder = "/mnt/bn/yufan-dev-my/ysh/Datasets/dummy_fp_offload_latents" output_folder = "/mnt/bn/yufan-dev-my/ysh/Datasets/dummy_fp_offload_latents/decoded_videos" # 创建输出文件夹 os.makedirs(output_folder, exist_ok=True) # 获取所有.pt文件 pt_files = glob.glob(os.path.join(input_folder, "*.pt")) print(f"找到 {len(pt_files)} 个.pt文件") if len(pt_files) == 0: print("没有找到.pt文件!") return # 检查可用GPU数量 num_gpus = min(8, torch.cuda.device_count()) print(f"使用 {num_gpus} 个GPU进行并行处理") # 将文件分配到不同的GPU files_per_gpu = len(pt_files) // num_gpus file_chunks = [] for i in range(num_gpus): start_idx = i * files_per_gpu if i == num_gpus - 1: # 最后一个GPU处理剩余的所有文件 end_idx = len(pt_files) else: end_idx = (i + 1) * files_per_gpu file_chunks.append(pt_files[start_idx:end_idx]) print(f"GPU {i} 将处理 {len(file_chunks[i])} 个文件") # 使用多进程并行处理 start_time = time.time() processes = [] for gpu_id in range(num_gpus): if len(file_chunks[gpu_id]) > 0: # 只为有文件的GPU创建进程 p = mp.Process( target=process_files_on_gpu, args=(gpu_id, file_chunks[gpu_id], pretrained_model_path, output_folder) ) p.start() processes.append(p) # 等待所有进程完成 for p in processes: p.join() end_time = time.time() print(f"\n所有文件处理完成!总耗时: {end_time - start_time:.2f} 秒") if __name__ == "__main__": mp.set_start_method('spawn', force=True) # 确保多进程兼容性 main()