Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,70 +1,195 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
- name: original_width
|
| 38 |
-
dtype: int32
|
| 39 |
-
- name: original_height
|
| 40 |
-
dtype: int32
|
| 41 |
-
- name: coco_width
|
| 42 |
-
dtype: int32
|
| 43 |
-
- name: coco_height
|
| 44 |
-
dtype: int32
|
| 45 |
-
- name: collection
|
| 46 |
-
dtype: string
|
| 47 |
-
- name: doc_category
|
| 48 |
-
dtype: string
|
| 49 |
-
splits:
|
| 50 |
-
- name: train
|
| 51 |
-
num_bytes: 773564178
|
| 52 |
-
num_examples: 69103
|
| 53 |
-
- name: validation
|
| 54 |
-
num_bytes: 74492844
|
| 55 |
-
num_examples: 6480
|
| 56 |
-
- name: test
|
| 57 |
-
num_bytes: 58899926
|
| 58 |
-
num_examples: 4994
|
| 59 |
-
download_size: 196812287
|
| 60 |
-
dataset_size: 906956948
|
| 61 |
-
configs:
|
| 62 |
-
- config_name: default
|
| 63 |
-
data_files:
|
| 64 |
-
- split: train
|
| 65 |
-
path: data/train-*
|
| 66 |
-
- split: validation
|
| 67 |
-
path: data/validation-*
|
| 68 |
-
- split: test
|
| 69 |
-
path: data/test-*
|
| 70 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- de
|
| 5 |
+
- fr
|
| 6 |
+
- ja
|
| 7 |
+
annotations_creators:
|
| 8 |
+
- crowdsourced
|
| 9 |
+
license: other
|
| 10 |
+
pretty_name: DocLayNet large
|
| 11 |
+
size_categories:
|
| 12 |
+
- 10K<n<100K
|
| 13 |
+
tags:
|
| 14 |
+
- DocLayNet
|
| 15 |
+
- COCO
|
| 16 |
+
- PDF
|
| 17 |
+
- IBM
|
| 18 |
+
- Financial-Reports
|
| 19 |
+
- Finance
|
| 20 |
+
- Manuals
|
| 21 |
+
- Scientific-Articles
|
| 22 |
+
- Science
|
| 23 |
+
- Laws
|
| 24 |
+
- Law
|
| 25 |
+
- Regulations
|
| 26 |
+
- Patents
|
| 27 |
+
- Government-Tenders
|
| 28 |
+
- object-detection
|
| 29 |
+
- image-segmentation
|
| 30 |
+
- token-classification
|
| 31 |
+
task_categories:
|
| 32 |
+
- object-detection
|
| 33 |
+
- image-segmentation
|
| 34 |
+
- token-classification
|
| 35 |
+
task_ids:
|
| 36 |
+
- instance-segmentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
---
|
| 38 |
+
|
| 39 |
+
# Dataset Card for DocLayNet large without image
|
| 40 |
+
|
| 41 |
+
## About this card (02/14/2024)
|
| 42 |
+
|
| 43 |
+
### Property and license
|
| 44 |
+
|
| 45 |
+
All information from this page but the content of this paragraph "About this card (02/14/2025)" has been copied/pasted from [Dataset Card for DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet).
|
| 46 |
+
|
| 47 |
+
DocLayNet is a dataset created by Deep Search (IBM Research) published under [license CDLA-Permissive-1.0](https://huggingface.co/datasets/ds4sd/DocLayNet#licensing-information).
|
| 48 |
+
|
| 49 |
+
I do not claim any rights to the data taken from this dataset and published on this page.
|
| 50 |
+
|
| 51 |
+
# Dataset Card for DocLayNet
|
| 52 |
+
|
| 53 |
+
## Table of Contents
|
| 54 |
+
- [Table of Contents](#table-of-contents)
|
| 55 |
+
- [Dataset Description](#dataset-description)
|
| 56 |
+
- [Dataset Summary](#dataset-summary)
|
| 57 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 58 |
+
- [Dataset Structure](#dataset-structure)
|
| 59 |
+
- [Data Fields](#data-fields)
|
| 60 |
+
- [Data Splits](#data-splits)
|
| 61 |
+
- [Dataset Creation](#dataset-creation)
|
| 62 |
+
- [Annotations](#annotations)
|
| 63 |
+
- [Additional Information](#additional-information)
|
| 64 |
+
- [Dataset Curators](#dataset-curators)
|
| 65 |
+
- [Licensing Information](#licensing-information)
|
| 66 |
+
- [Citation Information](#citation-information)
|
| 67 |
+
- [Contributions](#contributions)
|
| 68 |
+
|
| 69 |
+
## Dataset Description
|
| 70 |
+
|
| 71 |
+
- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
|
| 72 |
+
- **Repository:** https://github.com/DS4SD/DocLayNet
|
| 73 |
+
- **Paper:** https://doi.org/10.1145/3534678.3539043
|
| 74 |
+
- **Leaderboard:**
|
| 75 |
+
- **Point of Contact:**
|
| 76 |
+
|
| 77 |
+
### Dataset Summary
|
| 78 |
+
|
| 79 |
+
DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
|
| 80 |
+
|
| 81 |
+
1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
|
| 82 |
+
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
|
| 83 |
+
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
|
| 84 |
+
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
|
| 85 |
+
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
|
| 86 |
+
|
| 87 |
+
### Supported Tasks and Leaderboards
|
| 88 |
+
|
| 89 |
+
We are hosting a competition in ICDAR 2023 based on the DocLayNet dataset. For more information see https://ds4sd.github.io/icdar23-doclaynet/.
|
| 90 |
+
|
| 91 |
+
## Dataset Structure
|
| 92 |
+
|
| 93 |
+
### Data Fields
|
| 94 |
+
|
| 95 |
+
DocLayNet provides four types of data assets:
|
| 96 |
+
|
| 97 |
+
1. Bounding-box annotations in COCO format for each PNG image
|
| 98 |
+
2. Extra: Single-page PDF files matching each PNG image
|
| 99 |
+
3. Extra: JSON file matching each PDF page, which provides the digital text cells with coordinates and content
|
| 100 |
+
|
| 101 |
+
The COCO image record are defined like this example
|
| 102 |
+
|
| 103 |
+
```js
|
| 104 |
+
...
|
| 105 |
+
{
|
| 106 |
+
"id": 1,
|
| 107 |
+
"width": 1025,
|
| 108 |
+
"height": 1025,
|
| 109 |
+
"file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",
|
| 110 |
+
|
| 111 |
+
// Custom fields:
|
| 112 |
+
"doc_category": "financial_reports" // high-level document category
|
| 113 |
+
"collection": "ann_reports_00_04_fancy", // sub-collection name
|
| 114 |
+
"doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
|
| 115 |
+
"page_no": 9, // page number in original document
|
| 116 |
+
"precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
|
| 117 |
+
},
|
| 118 |
+
...
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
The `doc_category` field uses one of the following constants:
|
| 122 |
+
|
| 123 |
+
```
|
| 124 |
+
financial_reports,
|
| 125 |
+
scientific_articles,
|
| 126 |
+
laws_and_regulations,
|
| 127 |
+
government_tenders,
|
| 128 |
+
manuals,
|
| 129 |
+
patents
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
### Data Splits
|
| 134 |
+
|
| 135 |
+
The dataset provides three splits
|
| 136 |
+
- `train`
|
| 137 |
+
- `val`
|
| 138 |
+
- `test`
|
| 139 |
+
|
| 140 |
+
## Dataset Creation
|
| 141 |
+
|
| 142 |
+
### Annotations
|
| 143 |
+
|
| 144 |
+
#### Annotation process
|
| 145 |
+
|
| 146 |
+
The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
#### Who are the annotators?
|
| 150 |
+
|
| 151 |
+
Annotations are crowdsourced.
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
## Additional Information
|
| 155 |
+
|
| 156 |
+
### Dataset Curators
|
| 157 |
+
|
| 158 |
+
The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
|
| 159 |
+
You can contact us at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).
|
| 160 |
+
|
| 161 |
+
Curators:
|
| 162 |
+
- Christoph Auer, [@cau-git](https://github.com/cau-git)
|
| 163 |
+
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
|
| 164 |
+
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
|
| 165 |
+
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
|
| 166 |
+
|
| 167 |
+
### Licensing Information
|
| 168 |
+
|
| 169 |
+
License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
### Citation Information
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
```bib
|
| 176 |
+
@article{doclaynet2022,
|
| 177 |
+
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
|
| 178 |
+
doi = {10.1145/3534678.353904},
|
| 179 |
+
url = {https://doi.org/10.1145/3534678.3539043},
|
| 180 |
+
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
|
| 181 |
+
year = {2022},
|
| 182 |
+
isbn = {9781450393850},
|
| 183 |
+
publisher = {Association for Computing Machinery},
|
| 184 |
+
address = {New York, NY, USA},
|
| 185 |
+
booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
|
| 186 |
+
pages = {3743–3751},
|
| 187 |
+
numpages = {9},
|
| 188 |
+
location = {Washington DC, USA},
|
| 189 |
+
series = {KDD '22}
|
| 190 |
+
}
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
### Contributions
|
| 194 |
+
|
| 195 |
+
Thanks to [@dolfim-ibm](https://github.com/dolfim-ibm), [@cau-git](https://github.com/cau-git) for adding this dataset.
|