|  | from collections import defaultdict | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from enum import Enum | 
					
						
						|  | import logging | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from types import SimpleNamespace | 
					
						
						|  | from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  | import bioc | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class BigBioConfig(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for BigBio.""" | 
					
						
						|  |  | 
					
						
						|  | name: str = None | 
					
						
						|  | version: datasets.Version = None | 
					
						
						|  | description: str = None | 
					
						
						|  | schema: str = None | 
					
						
						|  | subset_id: str = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Tasks(Enum): | 
					
						
						|  | NAMED_ENTITY_RECOGNITION = "NER" | 
					
						
						|  | NAMED_ENTITY_DISAMBIGUATION = "NED" | 
					
						
						|  | EVENT_EXTRACTION = "EE" | 
					
						
						|  | RELATION_EXTRACTION = "RE" | 
					
						
						|  | COREFERENCE_RESOLUTION = "COREF" | 
					
						
						|  | QUESTION_ANSWERING = "QA" | 
					
						
						|  | TEXTUAL_ENTAILMENT = "TE" | 
					
						
						|  | SEMANTIC_SIMILARITY = "STS" | 
					
						
						|  | TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" | 
					
						
						|  | PARAPHRASING = "PARA" | 
					
						
						|  | TRANSLATION = "TRANSL" | 
					
						
						|  | SUMMARIZATION = "SUM" | 
					
						
						|  | TEXT_CLASSIFICATION = "TXTCLASS" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | entailment_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "premise": datasets.Value("string"), | 
					
						
						|  | "hypothesis": datasets.Value("string"), | 
					
						
						|  | "label": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pairs_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "text_1": datasets.Value("string"), | 
					
						
						|  | "text_2": datasets.Value("string"), | 
					
						
						|  | "label": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | qa_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "question_id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "question": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "choices": [datasets.Value("string")], | 
					
						
						|  | "context": datasets.Value("string"), | 
					
						
						|  | "answer": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "labels": [datasets.Value("string")], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text2text_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "text_1": datasets.Value("string"), | 
					
						
						|  | "text_2": datasets.Value("string"), | 
					
						
						|  | "text_1_name": datasets.Value("string"), | 
					
						
						|  | "text_2_name": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | kb_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "passages": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "entities": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
						
						|  | "normalized": [ | 
					
						
						|  | { | 
					
						
						|  | "db_name": datasets.Value("string"), | 
					
						
						|  | "db_id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "events": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  |  | 
					
						
						|  | "trigger": { | 
					
						
						|  | "text": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
						
						|  | }, | 
					
						
						|  | "arguments": [ | 
					
						
						|  | { | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "coreferences": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "entity_ids": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "relations": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "arg1_id": datasets.Value("string"), | 
					
						
						|  | "arg2_id": datasets.Value("string"), | 
					
						
						|  | "normalized": [ | 
					
						
						|  | { | 
					
						
						|  | "db_name": datasets.Value("string"), | 
					
						
						|  | "db_id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TASK_TO_SCHEMA = { | 
					
						
						|  | Tasks.NAMED_ENTITY_RECOGNITION.name: "KB", | 
					
						
						|  | Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB", | 
					
						
						|  | Tasks.EVENT_EXTRACTION.name: "KB", | 
					
						
						|  | Tasks.RELATION_EXTRACTION.name: "KB", | 
					
						
						|  | Tasks.COREFERENCE_RESOLUTION.name: "KB", | 
					
						
						|  | Tasks.QUESTION_ANSWERING.name: "QA", | 
					
						
						|  | Tasks.TEXTUAL_ENTAILMENT.name: "TE", | 
					
						
						|  | Tasks.SEMANTIC_SIMILARITY.name: "PAIRS", | 
					
						
						|  | Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS", | 
					
						
						|  | Tasks.PARAPHRASING.name: "T2T", | 
					
						
						|  | Tasks.TRANSLATION.name: "T2T", | 
					
						
						|  | Tasks.SUMMARIZATION.name: "T2T", | 
					
						
						|  | Tasks.TEXT_CLASSIFICATION.name: "TEXT", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | SCHEMA_TO_TASKS = defaultdict(set) | 
					
						
						|  | for task, schema in TASK_TO_SCHEMA.items(): | 
					
						
						|  | SCHEMA_TO_TASKS[schema].add(task) | 
					
						
						|  | SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) | 
					
						
						|  |  | 
					
						
						|  | VALID_TASKS = set(TASK_TO_SCHEMA.keys()) | 
					
						
						|  | VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) | 
					
						
						|  |  | 
					
						
						|  | SCHEMA_TO_FEATURES = { | 
					
						
						|  | "KB": kb_features, | 
					
						
						|  | "QA": qa_features, | 
					
						
						|  | "TE": entailment_features, | 
					
						
						|  | "T2T": text2text_features, | 
					
						
						|  | "TEXT": text_features, | 
					
						
						|  | "PAIRS": pairs_features, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple: | 
					
						
						|  |  | 
					
						
						|  | offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations] | 
					
						
						|  |  | 
					
						
						|  | text = ann.text | 
					
						
						|  |  | 
					
						
						|  | if len(offsets) > 1: | 
					
						
						|  | i = 0 | 
					
						
						|  | texts = [] | 
					
						
						|  | for start, end in offsets: | 
					
						
						|  | chunk_len = end - start | 
					
						
						|  | texts.append(text[i : chunk_len + i]) | 
					
						
						|  | i += chunk_len | 
					
						
						|  | while i < len(text) and text[i] == " ": | 
					
						
						|  | i += 1 | 
					
						
						|  | else: | 
					
						
						|  | texts = [text] | 
					
						
						|  |  | 
					
						
						|  | return offsets, texts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def remove_prefix(a: str, prefix: str) -> str: | 
					
						
						|  | if a.startswith(prefix): | 
					
						
						|  | a = a[len(prefix) :] | 
					
						
						|  | return a | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_brat_file( | 
					
						
						|  | txt_file: Path, | 
					
						
						|  | annotation_file_suffixes: List[str] = None, | 
					
						
						|  | parse_notes: bool = False, | 
					
						
						|  | ) -> Dict: | 
					
						
						|  | """ | 
					
						
						|  | Parse a brat file into the schema defined below. | 
					
						
						|  | `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt' | 
					
						
						|  | Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files, | 
					
						
						|  | e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'. | 
					
						
						|  | Will include annotator notes, when `parse_notes == True`. | 
					
						
						|  | brat_features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "text_bound_annotations": [  # T line in brat, e.g. type or event trigger | 
					
						
						|  | { | 
					
						
						|  | "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
						
						|  | "text": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "events": [  # E line in brat | 
					
						
						|  | { | 
					
						
						|  | "trigger": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ),  # refers to the text_bound_annotation of the trigger, | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "arguments": datasets.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "relations": [  # R line in brat | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "head": { | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | }, | 
					
						
						|  | "tail": { | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | }, | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "equivalences": [  # Equiv line in brat | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "ref_ids": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "attributes": [  # M or A lines in brat | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "value": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "normalizations": [  # N lines in brat | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "resource_name": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ),  # Name of the resource, e.g. "Wikipedia" | 
					
						
						|  | "cuid": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ),  # ID in the resource, e.g. 534366 | 
					
						
						|  | "text": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ),  # Human readable description/name of the entity, e.g. "Barack Obama" | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | ### OPTIONAL: Only included when `parse_notes == True` | 
					
						
						|  | "notes": [  # # lines in brat | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | example = {} | 
					
						
						|  | example["document_id"] = txt_file.with_suffix("").name | 
					
						
						|  | with txt_file.open() as f: | 
					
						
						|  | example["text"] = f.read() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if annotation_file_suffixes is None: | 
					
						
						|  | annotation_file_suffixes = [".a1", ".a2", ".ann"] | 
					
						
						|  |  | 
					
						
						|  | if len(annotation_file_suffixes) == 0: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | "At least one suffix for the to-be-read annotation files should be given!" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | ann_lines = [] | 
					
						
						|  | for suffix in annotation_file_suffixes: | 
					
						
						|  | annotation_file = txt_file.with_suffix(suffix) | 
					
						
						|  | try: | 
					
						
						|  | with annotation_file.open() as f: | 
					
						
						|  | ann_lines.extend(f.readlines()) | 
					
						
						|  | except Exception: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | example["text_bound_annotations"] = [] | 
					
						
						|  | example["events"] = [] | 
					
						
						|  | example["relations"] = [] | 
					
						
						|  | example["equivalences"] = [] | 
					
						
						|  | example["attributes"] = [] | 
					
						
						|  | example["normalizations"] = [] | 
					
						
						|  |  | 
					
						
						|  | if parse_notes: | 
					
						
						|  | example["notes"] = [] | 
					
						
						|  |  | 
					
						
						|  | for line in ann_lines: | 
					
						
						|  | line = line.strip() | 
					
						
						|  | if not line: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if line.startswith("T"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  | ann["type"] = fields[1].split()[0] | 
					
						
						|  | ann["offsets"] = [] | 
					
						
						|  | span_str = remove_prefix(fields[1], (ann["type"] + " ")) | 
					
						
						|  | text = fields[2] | 
					
						
						|  | for span in span_str.split(";"): | 
					
						
						|  | start, end = span.split() | 
					
						
						|  | ann["offsets"].append([int(start), int(end)]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ann["text"] = [] | 
					
						
						|  | if len(ann["offsets"]) > 1: | 
					
						
						|  | i = 0 | 
					
						
						|  | for start, end in ann["offsets"]: | 
					
						
						|  | chunk_len = end - start | 
					
						
						|  | ann["text"].append(text[i : chunk_len + i]) | 
					
						
						|  | i += chunk_len | 
					
						
						|  | while i < len(text) and text[i] == " ": | 
					
						
						|  | i += 1 | 
					
						
						|  | else: | 
					
						
						|  | ann["text"] = [text] | 
					
						
						|  |  | 
					
						
						|  | example["text_bound_annotations"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | elif line.startswith("E"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  |  | 
					
						
						|  | ann["type"], ann["trigger"] = fields[1].split()[0].split(":") | 
					
						
						|  |  | 
					
						
						|  | ann["arguments"] = [] | 
					
						
						|  | for role_ref_id in fields[1].split()[1:]: | 
					
						
						|  | argument = { | 
					
						
						|  | "role": (role_ref_id.split(":"))[0], | 
					
						
						|  | "ref_id": (role_ref_id.split(":"))[1], | 
					
						
						|  | } | 
					
						
						|  | ann["arguments"].append(argument) | 
					
						
						|  |  | 
					
						
						|  | example["events"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | elif line.startswith("R"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  | ann["type"] = fields[1].split()[0] | 
					
						
						|  |  | 
					
						
						|  | ann["head"] = { | 
					
						
						|  | "role": fields[1].split()[1].split(":")[0], | 
					
						
						|  | "ref_id": fields[1].split()[1].split(":")[1], | 
					
						
						|  | } | 
					
						
						|  | ann["tail"] = { | 
					
						
						|  | "role": fields[1].split()[2].split(":")[0], | 
					
						
						|  | "ref_id": fields[1].split()[2].split(":")[1], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | example["relations"].append(ann) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif line.startswith("*"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  | ann["ref_ids"] = fields[1].split()[1:] | 
					
						
						|  |  | 
					
						
						|  | example["equivalences"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | elif line.startswith("A") or line.startswith("M"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  |  | 
					
						
						|  | info = fields[1].split() | 
					
						
						|  | ann["type"] = info[0] | 
					
						
						|  | ann["ref_id"] = info[1] | 
					
						
						|  |  | 
					
						
						|  | if len(info) > 2: | 
					
						
						|  | ann["value"] = info[2] | 
					
						
						|  | else: | 
					
						
						|  | ann["value"] = "" | 
					
						
						|  |  | 
					
						
						|  | example["attributes"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | elif line.startswith("N"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  | ann["text"] = fields[2] | 
					
						
						|  |  | 
					
						
						|  | info = fields[1].split() | 
					
						
						|  |  | 
					
						
						|  | ann["type"] = info[0] | 
					
						
						|  | ann["ref_id"] = info[1] | 
					
						
						|  | ann["resource_name"] = info[2].split(":")[0] | 
					
						
						|  | ann["cuid"] = info[2].split(":")[1] | 
					
						
						|  | example["normalizations"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | elif parse_notes and line.startswith("#"): | 
					
						
						|  | ann = {} | 
					
						
						|  | fields = line.split("\t") | 
					
						
						|  |  | 
					
						
						|  | ann["id"] = fields[0] | 
					
						
						|  | ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL | 
					
						
						|  |  | 
					
						
						|  | info = fields[1].split() | 
					
						
						|  |  | 
					
						
						|  | ann["type"] = info[0] | 
					
						
						|  | ann["ref_id"] = info[1] | 
					
						
						|  | example["notes"].append(ann) | 
					
						
						|  |  | 
					
						
						|  | return example | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict: | 
					
						
						|  | """ | 
					
						
						|  | Transform a brat parse (conforming to the standard brat schema) obtained with | 
					
						
						|  | `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py) | 
					
						
						|  | :param brat_parse: | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | unified_example = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | id_prefix = brat_parse["document_id"] + "_" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unified_example["document_id"] = brat_parse["document_id"] | 
					
						
						|  | unified_example["passages"] = [ | 
					
						
						|  | { | 
					
						
						|  | "id": id_prefix + "_text", | 
					
						
						|  | "type": "abstract", | 
					
						
						|  | "text": [brat_parse["text"]], | 
					
						
						|  | "offsets": [[0, len(brat_parse["text"])]], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ref_id_to_normalizations = defaultdict(list) | 
					
						
						|  | for normalization in brat_parse["normalizations"]: | 
					
						
						|  | ref_id_to_normalizations[normalization["ref_id"]].append( | 
					
						
						|  | { | 
					
						
						|  | "db_name": normalization["resource_name"], | 
					
						
						|  | "db_id": normalization["cuid"], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unified_example["events"] = [] | 
					
						
						|  | non_event_ann = brat_parse["text_bound_annotations"].copy() | 
					
						
						|  | for event in brat_parse["events"]: | 
					
						
						|  | event = event.copy() | 
					
						
						|  | event["id"] = id_prefix + event["id"] | 
					
						
						|  | trigger = next( | 
					
						
						|  | tr | 
					
						
						|  | for tr in brat_parse["text_bound_annotations"] | 
					
						
						|  | if tr["id"] == event["trigger"] | 
					
						
						|  | ) | 
					
						
						|  | if trigger in non_event_ann: | 
					
						
						|  | non_event_ann.remove(trigger) | 
					
						
						|  | event["trigger"] = { | 
					
						
						|  | "text": trigger["text"].copy(), | 
					
						
						|  | "offsets": trigger["offsets"].copy(), | 
					
						
						|  | } | 
					
						
						|  | for argument in event["arguments"]: | 
					
						
						|  | argument["ref_id"] = id_prefix + argument["ref_id"] | 
					
						
						|  |  | 
					
						
						|  | unified_example["events"].append(event) | 
					
						
						|  |  | 
					
						
						|  | unified_example["entities"] = [] | 
					
						
						|  | anno_ids = [ref_id["id"] for ref_id in non_event_ann] | 
					
						
						|  | for ann in non_event_ann: | 
					
						
						|  | entity_ann = ann.copy() | 
					
						
						|  | entity_ann["id"] = id_prefix + entity_ann["id"] | 
					
						
						|  | entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]] | 
					
						
						|  | unified_example["entities"].append(entity_ann) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unified_example["relations"] = [] | 
					
						
						|  | skipped_relations = set() | 
					
						
						|  | for ann in brat_parse["relations"]: | 
					
						
						|  | if ( | 
					
						
						|  | ann["head"]["ref_id"] not in anno_ids | 
					
						
						|  | or ann["tail"]["ref_id"] not in anno_ids | 
					
						
						|  | ): | 
					
						
						|  | skipped_relations.add(ann["id"]) | 
					
						
						|  | continue | 
					
						
						|  | unified_example["relations"].append( | 
					
						
						|  | { | 
					
						
						|  | "arg1_id": id_prefix + ann["head"]["ref_id"], | 
					
						
						|  | "arg2_id": id_prefix + ann["tail"]["ref_id"], | 
					
						
						|  | "id": id_prefix + ann["id"], | 
					
						
						|  | "type": ann["type"], | 
					
						
						|  | "normalized": [], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | if len(skipped_relations) > 0: | 
					
						
						|  | example_id = brat_parse["document_id"] | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities." | 
					
						
						|  | f" Skip (for now): " | 
					
						
						|  | f"{list(skipped_relations)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unified_example["coreferences"] = [] | 
					
						
						|  | for i, ann in enumerate(brat_parse["equivalences"], start=1): | 
					
						
						|  | is_entity_cluster = True | 
					
						
						|  | for ref_id in ann["ref_ids"]: | 
					
						
						|  | if not ref_id.startswith("T"): | 
					
						
						|  | is_entity_cluster = False | 
					
						
						|  | elif ref_id not in anno_ids: | 
					
						
						|  | is_entity_cluster = False | 
					
						
						|  | if is_entity_cluster: | 
					
						
						|  | entity_ids = [id_prefix + i for i in ann["ref_ids"]] | 
					
						
						|  | unified_example["coreferences"].append( | 
					
						
						|  | {"id": id_prefix + str(i), "entity_ids": entity_ids} | 
					
						
						|  | ) | 
					
						
						|  | return unified_example | 
					
						
						|  |  |