Update medparasimp based on git version 78b2d97
Browse files- README.md +55 -0
- bigbiohub.py +590 -0
- medparasimp.py +235 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,55 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language:
         | 
| 3 | 
            +
              - en
         | 
| 4 | 
            +
            bigbio_language:
         | 
| 5 | 
            +
              - English
         | 
| 6 | 
            +
            license: apache-2.0
         | 
| 7 | 
            +
            bigbio_license_shortname: APACHE_2p0
         | 
| 8 | 
            +
            multilinguality: monolingual
         | 
| 9 | 
            +
            pretty_name: Paragraph-level Simplification of Medical Texts
         | 
| 10 | 
            +
            homepage: https://github.com/AshOlogn/Paragraph-level-Simplification-of-Medical-Texts
         | 
| 11 | 
            +
            bigbio_pubmed: false
         | 
| 12 | 
            +
            bigbio_public: true
         | 
| 13 | 
            +
            bigbio_tasks:
         | 
| 14 | 
            +
              - SUM
         | 
| 15 | 
            +
            paperswithcode_id: paragraph-level-simplification-of-medical
         | 
| 16 | 
            +
            ---
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            # Dataset Card for Paragraph-level Simplification of Medical Texts
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            ## Dataset Description
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            - **Homepage:** https://github.com/AshOlogn/Paragraph-level-Simplification-of-Medical-Texts
         | 
| 24 | 
            +
            - **Pubmed:** False
         | 
| 25 | 
            +
            - **Public:** True
         | 
| 26 | 
            +
            - **Tasks:** SUM
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            This dataset is designed for the summarization NLP task. It is a
         | 
| 30 | 
            +
            collection of technical abstracts of biomedical systematic reviews
         | 
| 31 | 
            +
            and corresponding plain-language summaries (PLS) from the Cochrane
         | 
| 32 | 
            +
            Database of Systematic Reviews, which comprises thousands of evidence
         | 
| 33 | 
            +
            synopses (where authors provide an overview of all published evidence
         | 
| 34 | 
            +
            relevant to a particular clinical question or topic). The PLS are
         | 
| 35 | 
            +
            written by review authors; Cochrane’s PLS standards recommend that
         | 
| 36 | 
            +
            “the PLS should be written in plain English which can be understood by
         | 
| 37 | 
            +
            most readers without a university education”. PLS are not parallel with
         | 
| 38 | 
            +
            every sentence in the abstract; on the contrary, they are structured heterogeneously.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            ## Citation Information
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ```
         | 
| 44 | 
            +
            @inproceedings{devaraj-etal-2021-paragraph,
         | 
| 45 | 
            +
                title = "Paragraph-level Simplification of Medical Texts",
         | 
| 46 | 
            +
                author = "Devaraj, Ashwin and Marshall, Iain and Wallace, Byron and Li, Junyi Jessy",
         | 
| 47 | 
            +
                booktitle = {Proceedings of the 2021 Conference of the North
         | 
| 48 | 
            +
                            American Chapter of the Association for Computational Linguistics},
         | 
| 49 | 
            +
                month = jun,
         | 
| 50 | 
            +
                year = "2021",
         | 
| 51 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 52 | 
            +
                url = "https://www.aclweb.org/anthology/2021.naacl-main.395",
         | 
| 53 | 
            +
                pages = "4972--4984",
         | 
| 54 | 
            +
            }
         | 
| 55 | 
            +
            ```
         | 
    	
        bigbiohub.py
    ADDED
    
    | @@ -0,0 +1,590 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from collections import defaultdict
         | 
| 2 | 
            +
            from dataclasses import dataclass
         | 
| 3 | 
            +
            from enum import Enum
         | 
| 4 | 
            +
            import logging
         | 
| 5 | 
            +
            from pathlib import Path
         | 
| 6 | 
            +
            from types import SimpleNamespace
         | 
| 7 | 
            +
            from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import datasets
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            if TYPE_CHECKING:
         | 
| 12 | 
            +
                import bioc
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            @dataclass
         | 
| 21 | 
            +
            class BigBioConfig(datasets.BuilderConfig):
         | 
| 22 | 
            +
                """BuilderConfig for BigBio."""
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                name: str = None
         | 
| 25 | 
            +
                version: datasets.Version = None
         | 
| 26 | 
            +
                description: str = None
         | 
| 27 | 
            +
                schema: str = None
         | 
| 28 | 
            +
                subset_id: str = None
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            class Tasks(Enum):
         | 
| 32 | 
            +
                NAMED_ENTITY_RECOGNITION = "NER"
         | 
| 33 | 
            +
                NAMED_ENTITY_DISAMBIGUATION = "NED"
         | 
| 34 | 
            +
                EVENT_EXTRACTION = "EE"
         | 
| 35 | 
            +
                RELATION_EXTRACTION = "RE"
         | 
| 36 | 
            +
                COREFERENCE_RESOLUTION = "COREF"
         | 
| 37 | 
            +
                QUESTION_ANSWERING = "QA"
         | 
| 38 | 
            +
                TEXTUAL_ENTAILMENT = "TE"
         | 
| 39 | 
            +
                SEMANTIC_SIMILARITY = "STS"
         | 
| 40 | 
            +
                TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
         | 
| 41 | 
            +
                PARAPHRASING = "PARA"
         | 
| 42 | 
            +
                TRANSLATION = "TRANSL"
         | 
| 43 | 
            +
                SUMMARIZATION = "SUM"
         | 
| 44 | 
            +
                TEXT_CLASSIFICATION = "TXTCLASS"
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            entailment_features = datasets.Features(
         | 
| 48 | 
            +
                {
         | 
| 49 | 
            +
                    "id": datasets.Value("string"),
         | 
| 50 | 
            +
                    "premise": datasets.Value("string"),
         | 
| 51 | 
            +
                    "hypothesis": datasets.Value("string"),
         | 
| 52 | 
            +
                    "label": datasets.Value("string"),
         | 
| 53 | 
            +
                }
         | 
| 54 | 
            +
            )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            pairs_features = datasets.Features(
         | 
| 57 | 
            +
                {
         | 
| 58 | 
            +
                    "id": datasets.Value("string"),
         | 
| 59 | 
            +
                    "document_id": datasets.Value("string"),
         | 
| 60 | 
            +
                    "text_1": datasets.Value("string"),
         | 
| 61 | 
            +
                    "text_2": datasets.Value("string"),
         | 
| 62 | 
            +
                    "label": datasets.Value("string"),
         | 
| 63 | 
            +
                }
         | 
| 64 | 
            +
            )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            qa_features = datasets.Features(
         | 
| 67 | 
            +
                {
         | 
| 68 | 
            +
                    "id": datasets.Value("string"),
         | 
| 69 | 
            +
                    "question_id": datasets.Value("string"),
         | 
| 70 | 
            +
                    "document_id": datasets.Value("string"),
         | 
| 71 | 
            +
                    "question": datasets.Value("string"),
         | 
| 72 | 
            +
                    "type": datasets.Value("string"),
         | 
| 73 | 
            +
                    "choices": [datasets.Value("string")],
         | 
| 74 | 
            +
                    "context": datasets.Value("string"),
         | 
| 75 | 
            +
                    "answer": datasets.Sequence(datasets.Value("string")),
         | 
| 76 | 
            +
                }
         | 
| 77 | 
            +
            )
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            text_features = datasets.Features(
         | 
| 80 | 
            +
                {
         | 
| 81 | 
            +
                    "id": datasets.Value("string"),
         | 
| 82 | 
            +
                    "document_id": datasets.Value("string"),
         | 
| 83 | 
            +
                    "text": datasets.Value("string"),
         | 
| 84 | 
            +
                    "labels": [datasets.Value("string")],
         | 
| 85 | 
            +
                }
         | 
| 86 | 
            +
            )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            text2text_features = datasets.Features(
         | 
| 89 | 
            +
                {
         | 
| 90 | 
            +
                    "id": datasets.Value("string"),
         | 
| 91 | 
            +
                    "document_id": datasets.Value("string"),
         | 
| 92 | 
            +
                    "text_1": datasets.Value("string"),
         | 
| 93 | 
            +
                    "text_2": datasets.Value("string"),
         | 
| 94 | 
            +
                    "text_1_name": datasets.Value("string"),
         | 
| 95 | 
            +
                    "text_2_name": datasets.Value("string"),
         | 
| 96 | 
            +
                }
         | 
| 97 | 
            +
            )
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            kb_features = datasets.Features(
         | 
| 100 | 
            +
                {
         | 
| 101 | 
            +
                    "id": datasets.Value("string"),
         | 
| 102 | 
            +
                    "document_id": datasets.Value("string"),
         | 
| 103 | 
            +
                    "passages": [
         | 
| 104 | 
            +
                        {
         | 
| 105 | 
            +
                            "id": datasets.Value("string"),
         | 
| 106 | 
            +
                            "type": datasets.Value("string"),
         | 
| 107 | 
            +
                            "text": datasets.Sequence(datasets.Value("string")),
         | 
| 108 | 
            +
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
         | 
| 109 | 
            +
                        }
         | 
| 110 | 
            +
                    ],
         | 
| 111 | 
            +
                    "entities": [
         | 
| 112 | 
            +
                        {
         | 
| 113 | 
            +
                            "id": datasets.Value("string"),
         | 
| 114 | 
            +
                            "type": datasets.Value("string"),
         | 
| 115 | 
            +
                            "text": datasets.Sequence(datasets.Value("string")),
         | 
| 116 | 
            +
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
         | 
| 117 | 
            +
                            "normalized": [
         | 
| 118 | 
            +
                                {
         | 
| 119 | 
            +
                                    "db_name": datasets.Value("string"),
         | 
| 120 | 
            +
                                    "db_id": datasets.Value("string"),
         | 
| 121 | 
            +
                                }
         | 
| 122 | 
            +
                            ],
         | 
| 123 | 
            +
                        }
         | 
| 124 | 
            +
                    ],
         | 
| 125 | 
            +
                    "events": [
         | 
| 126 | 
            +
                        {
         | 
| 127 | 
            +
                            "id": datasets.Value("string"),
         | 
| 128 | 
            +
                            "type": datasets.Value("string"),
         | 
| 129 | 
            +
                            # refers to the text_bound_annotation of the trigger
         | 
| 130 | 
            +
                            "trigger": {
         | 
| 131 | 
            +
                                "text": datasets.Sequence(datasets.Value("string")),
         | 
| 132 | 
            +
                                "offsets": datasets.Sequence([datasets.Value("int32")]),
         | 
| 133 | 
            +
                            },
         | 
| 134 | 
            +
                            "arguments": [
         | 
| 135 | 
            +
                                {
         | 
| 136 | 
            +
                                    "role": datasets.Value("string"),
         | 
| 137 | 
            +
                                    "ref_id": datasets.Value("string"),
         | 
| 138 | 
            +
                                }
         | 
| 139 | 
            +
                            ],
         | 
| 140 | 
            +
                        }
         | 
| 141 | 
            +
                    ],
         | 
| 142 | 
            +
                    "coreferences": [
         | 
| 143 | 
            +
                        {
         | 
| 144 | 
            +
                            "id": datasets.Value("string"),
         | 
| 145 | 
            +
                            "entity_ids": datasets.Sequence(datasets.Value("string")),
         | 
| 146 | 
            +
                        }
         | 
| 147 | 
            +
                    ],
         | 
| 148 | 
            +
                    "relations": [
         | 
| 149 | 
            +
                        {
         | 
| 150 | 
            +
                            "id": datasets.Value("string"),
         | 
| 151 | 
            +
                            "type": datasets.Value("string"),
         | 
| 152 | 
            +
                            "arg1_id": datasets.Value("string"),
         | 
| 153 | 
            +
                            "arg2_id": datasets.Value("string"),
         | 
| 154 | 
            +
                            "normalized": [
         | 
| 155 | 
            +
                                {
         | 
| 156 | 
            +
                                    "db_name": datasets.Value("string"),
         | 
| 157 | 
            +
                                    "db_id": datasets.Value("string"),
         | 
| 158 | 
            +
                                }
         | 
| 159 | 
            +
                            ],
         | 
| 160 | 
            +
                        }
         | 
| 161 | 
            +
                    ],
         | 
| 162 | 
            +
                }
         | 
| 163 | 
            +
            )
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            TASK_TO_SCHEMA = {
         | 
| 167 | 
            +
                Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
         | 
| 168 | 
            +
                Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
         | 
| 169 | 
            +
                Tasks.EVENT_EXTRACTION.name: "KB",
         | 
| 170 | 
            +
                Tasks.RELATION_EXTRACTION.name: "KB",
         | 
| 171 | 
            +
                Tasks.COREFERENCE_RESOLUTION.name: "KB",
         | 
| 172 | 
            +
                Tasks.QUESTION_ANSWERING.name: "QA",
         | 
| 173 | 
            +
                Tasks.TEXTUAL_ENTAILMENT.name: "TE",
         | 
| 174 | 
            +
                Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
         | 
| 175 | 
            +
                Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
         | 
| 176 | 
            +
                Tasks.PARAPHRASING.name: "T2T",
         | 
| 177 | 
            +
                Tasks.TRANSLATION.name: "T2T",
         | 
| 178 | 
            +
                Tasks.SUMMARIZATION.name: "T2T",
         | 
| 179 | 
            +
                Tasks.TEXT_CLASSIFICATION.name: "TEXT",
         | 
| 180 | 
            +
            }
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            SCHEMA_TO_TASKS = defaultdict(set)
         | 
| 183 | 
            +
            for task, schema in TASK_TO_SCHEMA.items():
         | 
| 184 | 
            +
                SCHEMA_TO_TASKS[schema].add(task)
         | 
| 185 | 
            +
            SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            VALID_TASKS = set(TASK_TO_SCHEMA.keys())
         | 
| 188 | 
            +
            VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            SCHEMA_TO_FEATURES = {
         | 
| 191 | 
            +
                "KB": kb_features,
         | 
| 192 | 
            +
                "QA": qa_features,
         | 
| 193 | 
            +
                "TE": entailment_features,
         | 
| 194 | 
            +
                "T2T": text2text_features,
         | 
| 195 | 
            +
                "TEXT": text_features,
         | 
| 196 | 
            +
                "PAIRS": pairs_features,
         | 
| 197 | 
            +
            }
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                text = ann.text
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                if len(offsets) > 1:
         | 
| 207 | 
            +
                    i = 0
         | 
| 208 | 
            +
                    texts = []
         | 
| 209 | 
            +
                    for start, end in offsets:
         | 
| 210 | 
            +
                        chunk_len = end - start
         | 
| 211 | 
            +
                        texts.append(text[i : chunk_len + i])
         | 
| 212 | 
            +
                        i += chunk_len
         | 
| 213 | 
            +
                        while i < len(text) and text[i] == " ":
         | 
| 214 | 
            +
                            i += 1
         | 
| 215 | 
            +
                else:
         | 
| 216 | 
            +
                    texts = [text]
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                return offsets, texts
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            def remove_prefix(a: str, prefix: str) -> str:
         | 
| 222 | 
            +
                if a.startswith(prefix):
         | 
| 223 | 
            +
                    a = a[len(prefix) :]
         | 
| 224 | 
            +
                return a
         | 
| 225 | 
            +
             | 
| 226 | 
            +
             | 
| 227 | 
            +
            def parse_brat_file(
         | 
| 228 | 
            +
                txt_file: Path,
         | 
| 229 | 
            +
                annotation_file_suffixes: List[str] = None,
         | 
| 230 | 
            +
                parse_notes: bool = False,
         | 
| 231 | 
            +
            ) -> Dict:
         | 
| 232 | 
            +
                """
         | 
| 233 | 
            +
                Parse a brat file into the schema defined below.
         | 
| 234 | 
            +
                `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
         | 
| 235 | 
            +
                Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
         | 
| 236 | 
            +
                e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
         | 
| 237 | 
            +
                Will include annotator notes, when `parse_notes == True`.
         | 
| 238 | 
            +
                brat_features = datasets.Features(
         | 
| 239 | 
            +
                    {
         | 
| 240 | 
            +
                        "id": datasets.Value("string"),
         | 
| 241 | 
            +
                        "document_id": datasets.Value("string"),
         | 
| 242 | 
            +
                        "text": datasets.Value("string"),
         | 
| 243 | 
            +
                        "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
         | 
| 244 | 
            +
                            {
         | 
| 245 | 
            +
                                "offsets": datasets.Sequence([datasets.Value("int32")]),
         | 
| 246 | 
            +
                                "text": datasets.Sequence(datasets.Value("string")),
         | 
| 247 | 
            +
                                "type": datasets.Value("string"),
         | 
| 248 | 
            +
                                "id": datasets.Value("string"),
         | 
| 249 | 
            +
                            }
         | 
| 250 | 
            +
                        ],
         | 
| 251 | 
            +
                        "events": [  # E line in brat
         | 
| 252 | 
            +
                            {
         | 
| 253 | 
            +
                                "trigger": datasets.Value(
         | 
| 254 | 
            +
                                    "string"
         | 
| 255 | 
            +
                                ),  # refers to the text_bound_annotation of the trigger,
         | 
| 256 | 
            +
                                "id": datasets.Value("string"),
         | 
| 257 | 
            +
                                "type": datasets.Value("string"),
         | 
| 258 | 
            +
                                "arguments": datasets.Sequence(
         | 
| 259 | 
            +
                                    {
         | 
| 260 | 
            +
                                        "role": datasets.Value("string"),
         | 
| 261 | 
            +
                                        "ref_id": datasets.Value("string"),
         | 
| 262 | 
            +
                                    }
         | 
| 263 | 
            +
                                ),
         | 
| 264 | 
            +
                            }
         | 
| 265 | 
            +
                        ],
         | 
| 266 | 
            +
                        "relations": [  # R line in brat
         | 
| 267 | 
            +
                            {
         | 
| 268 | 
            +
                                "id": datasets.Value("string"),
         | 
| 269 | 
            +
                                "head": {
         | 
| 270 | 
            +
                                    "ref_id": datasets.Value("string"),
         | 
| 271 | 
            +
                                    "role": datasets.Value("string"),
         | 
| 272 | 
            +
                                },
         | 
| 273 | 
            +
                                "tail": {
         | 
| 274 | 
            +
                                    "ref_id": datasets.Value("string"),
         | 
| 275 | 
            +
                                    "role": datasets.Value("string"),
         | 
| 276 | 
            +
                                },
         | 
| 277 | 
            +
                                "type": datasets.Value("string"),
         | 
| 278 | 
            +
                            }
         | 
| 279 | 
            +
                        ],
         | 
| 280 | 
            +
                        "equivalences": [  # Equiv line in brat
         | 
| 281 | 
            +
                            {
         | 
| 282 | 
            +
                                "id": datasets.Value("string"),
         | 
| 283 | 
            +
                                "ref_ids": datasets.Sequence(datasets.Value("string")),
         | 
| 284 | 
            +
                            }
         | 
| 285 | 
            +
                        ],
         | 
| 286 | 
            +
                        "attributes": [  # M or A lines in brat
         | 
| 287 | 
            +
                            {
         | 
| 288 | 
            +
                                "id": datasets.Value("string"),
         | 
| 289 | 
            +
                                "type": datasets.Value("string"),
         | 
| 290 | 
            +
                                "ref_id": datasets.Value("string"),
         | 
| 291 | 
            +
                                "value": datasets.Value("string"),
         | 
| 292 | 
            +
                            }
         | 
| 293 | 
            +
                        ],
         | 
| 294 | 
            +
                        "normalizations": [  # N lines in brat
         | 
| 295 | 
            +
                            {
         | 
| 296 | 
            +
                                "id": datasets.Value("string"),
         | 
| 297 | 
            +
                                "type": datasets.Value("string"),
         | 
| 298 | 
            +
                                "ref_id": datasets.Value("string"),
         | 
| 299 | 
            +
                                "resource_name": datasets.Value(
         | 
| 300 | 
            +
                                    "string"
         | 
| 301 | 
            +
                                ),  # Name of the resource, e.g. "Wikipedia"
         | 
| 302 | 
            +
                                "cuid": datasets.Value(
         | 
| 303 | 
            +
                                    "string"
         | 
| 304 | 
            +
                                ),  # ID in the resource, e.g. 534366
         | 
| 305 | 
            +
                                "text": datasets.Value(
         | 
| 306 | 
            +
                                    "string"
         | 
| 307 | 
            +
                                ),  # Human readable description/name of the entity, e.g. "Barack Obama"
         | 
| 308 | 
            +
                            }
         | 
| 309 | 
            +
                        ],
         | 
| 310 | 
            +
                        ### OPTIONAL: Only included when `parse_notes == True`
         | 
| 311 | 
            +
                        "notes": [  # # lines in brat
         | 
| 312 | 
            +
                            {
         | 
| 313 | 
            +
                                "id": datasets.Value("string"),
         | 
| 314 | 
            +
                                "type": datasets.Value("string"),
         | 
| 315 | 
            +
                                "ref_id": datasets.Value("string"),
         | 
| 316 | 
            +
                                "text": datasets.Value("string"),
         | 
| 317 | 
            +
                            }
         | 
| 318 | 
            +
                        ],
         | 
| 319 | 
            +
                    },
         | 
| 320 | 
            +
                    )
         | 
| 321 | 
            +
                """
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                example = {}
         | 
| 324 | 
            +
                example["document_id"] = txt_file.with_suffix("").name
         | 
| 325 | 
            +
                with txt_file.open() as f:
         | 
| 326 | 
            +
                    example["text"] = f.read()
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
         | 
| 329 | 
            +
                # for event extraction
         | 
| 330 | 
            +
                if annotation_file_suffixes is None:
         | 
| 331 | 
            +
                    annotation_file_suffixes = [".a1", ".a2", ".ann"]
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                if len(annotation_file_suffixes) == 0:
         | 
| 334 | 
            +
                    raise AssertionError(
         | 
| 335 | 
            +
                        "At least one suffix for the to-be-read annotation files should be given!"
         | 
| 336 | 
            +
                    )
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                ann_lines = []
         | 
| 339 | 
            +
                for suffix in annotation_file_suffixes:
         | 
| 340 | 
            +
                    annotation_file = txt_file.with_suffix(suffix)
         | 
| 341 | 
            +
                    if annotation_file.exists():
         | 
| 342 | 
            +
                        with annotation_file.open() as f:
         | 
| 343 | 
            +
                            ann_lines.extend(f.readlines())
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                example["text_bound_annotations"] = []
         | 
| 346 | 
            +
                example["events"] = []
         | 
| 347 | 
            +
                example["relations"] = []
         | 
| 348 | 
            +
                example["equivalences"] = []
         | 
| 349 | 
            +
                example["attributes"] = []
         | 
| 350 | 
            +
                example["normalizations"] = []
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                if parse_notes:
         | 
| 353 | 
            +
                    example["notes"] = []
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                for line in ann_lines:
         | 
| 356 | 
            +
                    line = line.strip()
         | 
| 357 | 
            +
                    if not line:
         | 
| 358 | 
            +
                        continue
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    if line.startswith("T"):  # Text bound
         | 
| 361 | 
            +
                        ann = {}
         | 
| 362 | 
            +
                        fields = line.split("\t")
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                        ann["id"] = fields[0]
         | 
| 365 | 
            +
                        ann["type"] = fields[1].split()[0]
         | 
| 366 | 
            +
                        ann["offsets"] = []
         | 
| 367 | 
            +
                        span_str = remove_prefix(fields[1], (ann["type"] + " "))
         | 
| 368 | 
            +
                        text = fields[2]
         | 
| 369 | 
            +
                        for span in span_str.split(";"):
         | 
| 370 | 
            +
                            start, end = span.split()
         | 
| 371 | 
            +
                            ann["offsets"].append([int(start), int(end)])
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                        # Heuristically split text of discontiguous entities into chunks
         | 
| 374 | 
            +
                        ann["text"] = []
         | 
| 375 | 
            +
                        if len(ann["offsets"]) > 1:
         | 
| 376 | 
            +
                            i = 0
         | 
| 377 | 
            +
                            for start, end in ann["offsets"]:
         | 
| 378 | 
            +
                                chunk_len = end - start
         | 
| 379 | 
            +
                                ann["text"].append(text[i : chunk_len + i])
         | 
| 380 | 
            +
                                i += chunk_len
         | 
| 381 | 
            +
                                while i < len(text) and text[i] == " ":
         | 
| 382 | 
            +
                                    i += 1
         | 
| 383 | 
            +
                        else:
         | 
| 384 | 
            +
                            ann["text"] = [text]
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                        example["text_bound_annotations"].append(ann)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                    elif line.startswith("E"):
         | 
| 389 | 
            +
                        ann = {}
         | 
| 390 | 
            +
                        fields = line.split("\t")
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                        ann["id"] = fields[0]
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                        ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                        ann["arguments"] = []
         | 
| 397 | 
            +
                        for role_ref_id in fields[1].split()[1:]:
         | 
| 398 | 
            +
                            argument = {
         | 
| 399 | 
            +
                                "role": (role_ref_id.split(":"))[0],
         | 
| 400 | 
            +
                                "ref_id": (role_ref_id.split(":"))[1],
         | 
| 401 | 
            +
                            }
         | 
| 402 | 
            +
                            ann["arguments"].append(argument)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        example["events"].append(ann)
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                    elif line.startswith("R"):
         | 
| 407 | 
            +
                        ann = {}
         | 
| 408 | 
            +
                        fields = line.split("\t")
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                        ann["id"] = fields[0]
         | 
| 411 | 
            +
                        ann["type"] = fields[1].split()[0]
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                        ann["head"] = {
         | 
| 414 | 
            +
                            "role": fields[1].split()[1].split(":")[0],
         | 
| 415 | 
            +
                            "ref_id": fields[1].split()[1].split(":")[1],
         | 
| 416 | 
            +
                        }
         | 
| 417 | 
            +
                        ann["tail"] = {
         | 
| 418 | 
            +
                            "role": fields[1].split()[2].split(":")[0],
         | 
| 419 | 
            +
                            "ref_id": fields[1].split()[2].split(":")[1],
         | 
| 420 | 
            +
                        }
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                        example["relations"].append(ann)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    # '*' seems to be the legacy way to mark equivalences,
         | 
| 425 | 
            +
                    # but I couldn't find any info on the current way
         | 
| 426 | 
            +
                    # this might have to be adapted dependent on the brat version
         | 
| 427 | 
            +
                    # of the annotation
         | 
| 428 | 
            +
                    elif line.startswith("*"):
         | 
| 429 | 
            +
                        ann = {}
         | 
| 430 | 
            +
                        fields = line.split("\t")
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                        ann["id"] = fields[0]
         | 
| 433 | 
            +
                        ann["ref_ids"] = fields[1].split()[1:]
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                        example["equivalences"].append(ann)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    elif line.startswith("A") or line.startswith("M"):
         | 
| 438 | 
            +
                        ann = {}
         | 
| 439 | 
            +
                        fields = line.split("\t")
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                        ann["id"] = fields[0]
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                        info = fields[1].split()
         | 
| 444 | 
            +
                        ann["type"] = info[0]
         | 
| 445 | 
            +
                        ann["ref_id"] = info[1]
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                        if len(info) > 2:
         | 
| 448 | 
            +
                            ann["value"] = info[2]
         | 
| 449 | 
            +
                        else:
         | 
| 450 | 
            +
                            ann["value"] = ""
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                        example["attributes"].append(ann)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    elif line.startswith("N"):
         | 
| 455 | 
            +
                        ann = {}
         | 
| 456 | 
            +
                        fields = line.split("\t")
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                        ann["id"] = fields[0]
         | 
| 459 | 
            +
                        ann["text"] = fields[2]
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                        info = fields[1].split()
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                        ann["type"] = info[0]
         | 
| 464 | 
            +
                        ann["ref_id"] = info[1]
         | 
| 465 | 
            +
                        ann["resource_name"] = info[2].split(":")[0]
         | 
| 466 | 
            +
                        ann["cuid"] = info[2].split(":")[1]
         | 
| 467 | 
            +
                        example["normalizations"].append(ann)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    elif parse_notes and line.startswith("#"):
         | 
| 470 | 
            +
                        ann = {}
         | 
| 471 | 
            +
                        fields = line.split("\t")
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                        ann["id"] = fields[0]
         | 
| 474 | 
            +
                        ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                        info = fields[1].split()
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                        ann["type"] = info[0]
         | 
| 479 | 
            +
                        ann["ref_id"] = info[1]
         | 
| 480 | 
            +
                        example["notes"].append(ann)
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                return example
         | 
| 483 | 
            +
             | 
| 484 | 
            +
             | 
| 485 | 
            +
            def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
         | 
| 486 | 
            +
                """
         | 
| 487 | 
            +
                Transform a brat parse (conforming to the standard brat schema) obtained with
         | 
| 488 | 
            +
                `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
         | 
| 489 | 
            +
                :param brat_parse:
         | 
| 490 | 
            +
                """
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                unified_example = {}
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                # Prefix all ids with document id to ensure global uniqueness,
         | 
| 495 | 
            +
                # because brat ids are only unique within their document
         | 
| 496 | 
            +
                id_prefix = brat_parse["document_id"] + "_"
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                # identical
         | 
| 499 | 
            +
                unified_example["document_id"] = brat_parse["document_id"]
         | 
| 500 | 
            +
                unified_example["passages"] = [
         | 
| 501 | 
            +
                    {
         | 
| 502 | 
            +
                        "id": id_prefix + "_text",
         | 
| 503 | 
            +
                        "type": "abstract",
         | 
| 504 | 
            +
                        "text": [brat_parse["text"]],
         | 
| 505 | 
            +
                        "offsets": [[0, len(brat_parse["text"])]],
         | 
| 506 | 
            +
                    }
         | 
| 507 | 
            +
                ]
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                # get normalizations
         | 
| 510 | 
            +
                ref_id_to_normalizations = defaultdict(list)
         | 
| 511 | 
            +
                for normalization in brat_parse["normalizations"]:
         | 
| 512 | 
            +
                    ref_id_to_normalizations[normalization["ref_id"]].append(
         | 
| 513 | 
            +
                        {
         | 
| 514 | 
            +
                            "db_name": normalization["resource_name"],
         | 
| 515 | 
            +
                            "db_id": normalization["cuid"],
         | 
| 516 | 
            +
                        }
         | 
| 517 | 
            +
                    )
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                # separate entities and event triggers
         | 
| 520 | 
            +
                unified_example["events"] = []
         | 
| 521 | 
            +
                non_event_ann = brat_parse["text_bound_annotations"].copy()
         | 
| 522 | 
            +
                for event in brat_parse["events"]:
         | 
| 523 | 
            +
                    event = event.copy()
         | 
| 524 | 
            +
                    event["id"] = id_prefix + event["id"]
         | 
| 525 | 
            +
                    trigger = next(
         | 
| 526 | 
            +
                        tr
         | 
| 527 | 
            +
                        for tr in brat_parse["text_bound_annotations"]
         | 
| 528 | 
            +
                        if tr["id"] == event["trigger"]
         | 
| 529 | 
            +
                    )
         | 
| 530 | 
            +
                    if trigger in non_event_ann:
         | 
| 531 | 
            +
                        non_event_ann.remove(trigger)
         | 
| 532 | 
            +
                    event["trigger"] = {
         | 
| 533 | 
            +
                        "text": trigger["text"].copy(),
         | 
| 534 | 
            +
                        "offsets": trigger["offsets"].copy(),
         | 
| 535 | 
            +
                    }
         | 
| 536 | 
            +
                    for argument in event["arguments"]:
         | 
| 537 | 
            +
                        argument["ref_id"] = id_prefix + argument["ref_id"]
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    unified_example["events"].append(event)
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                unified_example["entities"] = []
         | 
| 542 | 
            +
                anno_ids = [ref_id["id"] for ref_id in non_event_ann]
         | 
| 543 | 
            +
                for ann in non_event_ann:
         | 
| 544 | 
            +
                    entity_ann = ann.copy()
         | 
| 545 | 
            +
                    entity_ann["id"] = id_prefix + entity_ann["id"]
         | 
| 546 | 
            +
                    entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
         | 
| 547 | 
            +
                    unified_example["entities"].append(entity_ann)
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                # massage relations
         | 
| 550 | 
            +
                unified_example["relations"] = []
         | 
| 551 | 
            +
                skipped_relations = set()
         | 
| 552 | 
            +
                for ann in brat_parse["relations"]:
         | 
| 553 | 
            +
                    if (
         | 
| 554 | 
            +
                        ann["head"]["ref_id"] not in anno_ids
         | 
| 555 | 
            +
                        or ann["tail"]["ref_id"] not in anno_ids
         | 
| 556 | 
            +
                    ):
         | 
| 557 | 
            +
                        skipped_relations.add(ann["id"])
         | 
| 558 | 
            +
                        continue
         | 
| 559 | 
            +
                    unified_example["relations"].append(
         | 
| 560 | 
            +
                        {
         | 
| 561 | 
            +
                            "arg1_id": id_prefix + ann["head"]["ref_id"],
         | 
| 562 | 
            +
                            "arg2_id": id_prefix + ann["tail"]["ref_id"],
         | 
| 563 | 
            +
                            "id": id_prefix + ann["id"],
         | 
| 564 | 
            +
                            "type": ann["type"],
         | 
| 565 | 
            +
                            "normalized": [],
         | 
| 566 | 
            +
                        }
         | 
| 567 | 
            +
                    )
         | 
| 568 | 
            +
                if len(skipped_relations) > 0:
         | 
| 569 | 
            +
                    example_id = brat_parse["document_id"]
         | 
| 570 | 
            +
                    logger.info(
         | 
| 571 | 
            +
                        f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
         | 
| 572 | 
            +
                        f" Skip (for now): "
         | 
| 573 | 
            +
                        f"{list(skipped_relations)}"
         | 
| 574 | 
            +
                    )
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                # get coreferences
         | 
| 577 | 
            +
                unified_example["coreferences"] = []
         | 
| 578 | 
            +
                for i, ann in enumerate(brat_parse["equivalences"], start=1):
         | 
| 579 | 
            +
                    is_entity_cluster = True
         | 
| 580 | 
            +
                    for ref_id in ann["ref_ids"]:
         | 
| 581 | 
            +
                        if not ref_id.startswith("T"):  # not textbound -> no entity
         | 
| 582 | 
            +
                            is_entity_cluster = False
         | 
| 583 | 
            +
                        elif ref_id not in anno_ids:  # event trigger -> no entity
         | 
| 584 | 
            +
                            is_entity_cluster = False
         | 
| 585 | 
            +
                    if is_entity_cluster:
         | 
| 586 | 
            +
                        entity_ids = [id_prefix + i for i in ann["ref_ids"]]
         | 
| 587 | 
            +
                        unified_example["coreferences"].append(
         | 
| 588 | 
            +
                            {"id": id_prefix + str(i), "entity_ids": entity_ids}
         | 
| 589 | 
            +
                        )
         | 
| 590 | 
            +
                return unified_example
         | 
    	
        medparasimp.py
    ADDED
    
    | @@ -0,0 +1,235 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            """
         | 
| 17 | 
            +
            Paragraph-level Simplification of Medical Texts ("MedParaSimp") is a
         | 
| 18 | 
            +
            dataset that contains pairs of technical medical abstracts from
         | 
| 19 | 
            +
            biomedical systematic reviews (taken from the Cochrane Library)
         | 
| 20 | 
            +
            and their corresponding plain-language summarizations (PLS).
         | 
| 21 | 
            +
            The PLS's were created by the authors of the original abstracts.
         | 
| 22 | 
            +
            The dataset was obtained by scraping the Cochrane Library website.
         | 
| 23 | 
            +
            """
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from typing import Dict, List, Tuple
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            import datasets
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from .bigbiohub import BigBioConfig, Tasks, text2text_features
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            _LOCAL = False
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            _CITATION = """\
         | 
| 34 | 
            +
            @inproceedings{devaraj-etal-2021-paragraph,
         | 
| 35 | 
            +
                title = "Paragraph-level Simplification of Medical Texts",
         | 
| 36 | 
            +
                author = "Devaraj, Ashwin and Marshall, Iain and Wallace, Byron and Li, Junyi Jessy",
         | 
| 37 | 
            +
                booktitle = {Proceedings of the 2021 Conference of the North
         | 
| 38 | 
            +
                            American Chapter of the Association for Computational Linguistics},
         | 
| 39 | 
            +
                month = jun,
         | 
| 40 | 
            +
                year = "2021",
         | 
| 41 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 42 | 
            +
                url = "https://www.aclweb.org/anthology/2021.naacl-main.395",
         | 
| 43 | 
            +
                pages = "4972--4984",
         | 
| 44 | 
            +
            }
         | 
| 45 | 
            +
            """
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            _DATASETNAME = "medparasimp"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            _DESCRIPTION = """\
         | 
| 50 | 
            +
            This dataset is designed for the summarization NLP task. It is a
         | 
| 51 | 
            +
            collection of technical abstracts of biomedical systematic reviews
         | 
| 52 | 
            +
            and corresponding plain-language summaries (PLS) from the Cochrane
         | 
| 53 | 
            +
            Database of Systematic Reviews, which comprises thousands of evidence
         | 
| 54 | 
            +
            synopses (where authors provide an overview of all published evidence
         | 
| 55 | 
            +
            relevant to a particular clinical question or topic). The PLS are
         | 
| 56 | 
            +
            written by review authors; Cochrane’s PLS standards recommend that
         | 
| 57 | 
            +
            “the PLS should be written in plain English which can be understood by
         | 
| 58 | 
            +
            most readers without a university education”. PLS are not parallel with
         | 
| 59 | 
            +
            every sentence in the abstract; on the contrary, they are structured heterogeneously.
         | 
| 60 | 
            +
            """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            _HOMEPAGE = "https://github.com/AshOlogn/Paragraph-level-Simplification-of-Medical-Texts"
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            _LICENSE = "CC_BY_4p0"
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            _URLS = {
         | 
| 67 | 
            +
                _DATASETNAME: {
         | 
| 68 | 
            +
                    "train_doi": (
         | 
| 69 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 70 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/train.doi"
         | 
| 71 | 
            +
                    ),
         | 
| 72 | 
            +
                    "train_source": (
         | 
| 73 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 74 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/train.source"
         | 
| 75 | 
            +
                    ),
         | 
| 76 | 
            +
                    "train_target": (
         | 
| 77 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 78 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/train.target"
         | 
| 79 | 
            +
                    ),
         | 
| 80 | 
            +
                    "val_doi": (
         | 
| 81 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 82 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/val.doi"
         | 
| 83 | 
            +
                    ),
         | 
| 84 | 
            +
                    "val_source": (
         | 
| 85 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 86 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/val.source"
         | 
| 87 | 
            +
                    ),
         | 
| 88 | 
            +
                    "val_target": (
         | 
| 89 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 90 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/val.target"
         | 
| 91 | 
            +
                    ),
         | 
| 92 | 
            +
                    "test_doi": (
         | 
| 93 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 94 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/test.doi"
         | 
| 95 | 
            +
                    ),
         | 
| 96 | 
            +
                    "test_source": (
         | 
| 97 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 98 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/test.source"
         | 
| 99 | 
            +
                    ),
         | 
| 100 | 
            +
                    "test_target": (
         | 
| 101 | 
            +
                        "https://raw.githubusercontent.com/AshOlogn/"
         | 
| 102 | 
            +
                        "Paragraph-level-Simplification-of-Medical-Texts/main/data/data-1024/test.target"
         | 
| 103 | 
            +
                    ),
         | 
| 104 | 
            +
                }
         | 
| 105 | 
            +
            }
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            _SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            _SOURCE_VERSION = "1.0.0"
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            _BIGBIO_VERSION = "1.0.0"
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            _LANGUAGES = ["English (United States)"]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            _PUBMED = False
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            _DISPLAYNAME = "Paragraph-Level Simplification of Medical Texts"
         | 
| 118 | 
            +
             | 
| 119 | 
            +
             | 
| 120 | 
            +
            class MedParaSimpDataset(datasets.GeneratorBasedBuilder):
         | 
| 121 | 
            +
                """Paired abstracts and plain-language summaries from the Cochrane Database of Systematic Reviews."""
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
         | 
| 124 | 
            +
                BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                BUILDER_CONFIGS = [
         | 
| 127 | 
            +
                    BigBioConfig(
         | 
| 128 | 
            +
                        name="medparasimp_source",
         | 
| 129 | 
            +
                        version=SOURCE_VERSION,
         | 
| 130 | 
            +
                        description=(
         | 
| 131 | 
            +
                            "Paragraph-level Simplification of Medical Texts (MedParaSimp) is a"
         | 
| 132 | 
            +
                            "paired dataset of technical medical abstracts and their plain-language summarizations."
         | 
| 133 | 
            +
                        ),
         | 
| 134 | 
            +
                        schema="source",
         | 
| 135 | 
            +
                        subset_id="medparasimp",
         | 
| 136 | 
            +
                    ),
         | 
| 137 | 
            +
                    BigBioConfig(
         | 
| 138 | 
            +
                        name="medparasimp_bigbio_t2t",
         | 
| 139 | 
            +
                        version=BIGBIO_VERSION,
         | 
| 140 | 
            +
                        description=(
         | 
| 141 | 
            +
                            "Paragraph-level Simplification of Medical Texts (MedParaSimp) is a"
         | 
| 142 | 
            +
                            "paired dataset of technical medical abstracts and their plain-language summarizations."
         | 
| 143 | 
            +
                        ),
         | 
| 144 | 
            +
                        schema="bigbio_t2t",
         | 
| 145 | 
            +
                        subset_id="medparasimp",
         | 
| 146 | 
            +
                    ),
         | 
| 147 | 
            +
                ]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                DEFAULT_CONFIG_NAME = "medparasimp_source"
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def _info(self) -> datasets.DatasetInfo:
         | 
| 152 | 
            +
                    if self.config.schema == "source":
         | 
| 153 | 
            +
                        features = datasets.Features(
         | 
| 154 | 
            +
                            {
         | 
| 155 | 
            +
                                "id": datasets.Value("string"),
         | 
| 156 | 
            +
                                "document_id": datasets.Value("string"),
         | 
| 157 | 
            +
                                "text_1": datasets.Value("string"),
         | 
| 158 | 
            +
                                "text_2": datasets.Value("string"),
         | 
| 159 | 
            +
                                "text_1_name": datasets.Value("string"),
         | 
| 160 | 
            +
                                "text_2_name": datasets.Value("string"),
         | 
| 161 | 
            +
                            }
         | 
| 162 | 
            +
                        )
         | 
| 163 | 
            +
                    elif self.config.schema == "bigbio_t2t":
         | 
| 164 | 
            +
                        features = text2text_features
         | 
| 165 | 
            +
                    else:
         | 
| 166 | 
            +
                        raise ValueError(
         | 
| 167 | 
            +
                            f"Invalid config.schema specified ({self.config.schema}) - must be one of (source|bigbio_t2t)"
         | 
| 168 | 
            +
                        )
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    return datasets.DatasetInfo(
         | 
| 171 | 
            +
                        description=_DESCRIPTION,
         | 
| 172 | 
            +
                        features=features,
         | 
| 173 | 
            +
                        homepage=_HOMEPAGE,
         | 
| 174 | 
            +
                        license=str(_LICENSE),
         | 
| 175 | 
            +
                        citation=_CITATION,
         | 
| 176 | 
            +
                    )
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
         | 
| 179 | 
            +
                    """Returns SplitGenerators."""
         | 
| 180 | 
            +
                    urls = _URLS[_DATASETNAME]
         | 
| 181 | 
            +
                    data_dir = dl_manager.download_and_extract(urls)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    return [
         | 
| 184 | 
            +
                        datasets.SplitGenerator(
         | 
| 185 | 
            +
                            name=datasets.Split.TRAIN,
         | 
| 186 | 
            +
                            gen_kwargs={
         | 
| 187 | 
            +
                                "doi_filepath": data_dir["train_doi"],
         | 
| 188 | 
            +
                                "source_filepath": data_dir["train_source"],
         | 
| 189 | 
            +
                                "target_filepath": data_dir["train_target"],
         | 
| 190 | 
            +
                            },
         | 
| 191 | 
            +
                        ),
         | 
| 192 | 
            +
                        datasets.SplitGenerator(
         | 
| 193 | 
            +
                            name=datasets.Split.VALIDATION,
         | 
| 194 | 
            +
                            gen_kwargs={
         | 
| 195 | 
            +
                                "doi_filepath": data_dir["val_doi"],
         | 
| 196 | 
            +
                                "source_filepath": data_dir["val_source"],
         | 
| 197 | 
            +
                                "target_filepath": data_dir["val_target"],
         | 
| 198 | 
            +
                            },
         | 
| 199 | 
            +
                        ),
         | 
| 200 | 
            +
                        datasets.SplitGenerator(
         | 
| 201 | 
            +
                            name=datasets.Split.TEST,
         | 
| 202 | 
            +
                            gen_kwargs={
         | 
| 203 | 
            +
                                "doi_filepath": data_dir["test_doi"],
         | 
| 204 | 
            +
                                "source_filepath": data_dir["test_source"],
         | 
| 205 | 
            +
                                "target_filepath": data_dir["test_target"],
         | 
| 206 | 
            +
                            },
         | 
| 207 | 
            +
                        ),
         | 
| 208 | 
            +
                    ]
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                def _generate_examples(self, doi_filepath: str, source_filepath: str, target_filepath: str) -> Tuple[int, Dict]:
         | 
| 211 | 
            +
                    """Yields examples as (key, example) tuples."""
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    # Read data from files
         | 
| 214 | 
            +
                    with open(doi_filepath, "r") as f:
         | 
| 215 | 
            +
                        dois: List[str] = f.read().splitlines()
         | 
| 216 | 
            +
                    with open(source_filepath, "r") as f:
         | 
| 217 | 
            +
                        sources: List[str] = f.read().splitlines()
         | 
| 218 | 
            +
                    with open(target_filepath, "r") as f:
         | 
| 219 | 
            +
                        targets: List[str] = f.read().splitlines()
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    for idx, (source, target) in enumerate(zip(sources, targets)):
         | 
| 222 | 
            +
                        key: int = idx
         | 
| 223 | 
            +
                        example: Dict = {
         | 
| 224 | 
            +
                            "id": str(idx),
         | 
| 225 | 
            +
                            "document_id": dois[idx],
         | 
| 226 | 
            +
                            "text_1": source,
         | 
| 227 | 
            +
                            "text_2": target,
         | 
| 228 | 
            +
                            "text_1_name": "abstract",
         | 
| 229 | 
            +
                            "text_2_name": "pls",
         | 
| 230 | 
            +
                        }
         | 
| 231 | 
            +
                        yield (key, example)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
            if __name__ == "__main__":
         | 
| 235 | 
            +
                datasets.load_dataset(__file__)
         | 

