Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
|
@@ -412,7 +412,7 @@
|
|
| 412 |
"\n",
|
| 413 |
"#image_index = 0 # @param {type:'number'}\n",
|
| 414 |
"# @markdown 📥 Load the data (only required one time)\n",
|
| 415 |
-
"load_the_data =
|
| 416 |
"\n",
|
| 417 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
| 418 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
|
@@ -429,7 +429,7 @@
|
|
| 429 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
| 430 |
"\n",
|
| 431 |
"# @markdown Calculate most similiar items using above settings?\n",
|
| 432 |
-
"enable =
|
| 433 |
"\n",
|
| 434 |
"if (load_the_data):\n",
|
| 435 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
|
@@ -465,10 +465,10 @@
|
|
| 465 |
" # Get text features for user input\n",
|
| 466 |
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
| 467 |
" text_features_NEG = model.get_text_features(**inputs)\n",
|
| 468 |
-
" text_features_NEG =
|
| 469 |
"\n",
|
| 470 |
" # text-similarity\n",
|
| 471 |
-
" neg_sims =
|
| 472 |
" #------#\n",
|
| 473 |
"\n",
|
| 474 |
" # plus image-similarity\n",
|
|
@@ -476,7 +476,7 @@
|
|
| 476 |
"\n",
|
| 477 |
"\n",
|
| 478 |
" # minus NEG-similarity\n",
|
| 479 |
-
" sims = sims - neg_sims\n",
|
| 480 |
"\n",
|
| 481 |
" # Sort the items\n",
|
| 482 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
|
@@ -553,6 +553,77 @@
|
|
| 553 |
"execution_count": null,
|
| 554 |
"outputs": []
|
| 555 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
{
|
| 557 |
"cell_type": "markdown",
|
| 558 |
"source": [
|
|
@@ -798,77 +869,6 @@
|
|
| 798 |
"execution_count": null,
|
| 799 |
"outputs": []
|
| 800 |
},
|
| 801 |
-
{
|
| 802 |
-
"cell_type": "code",
|
| 803 |
-
"source": [
|
| 804 |
-
"# @title ⚙️📝 Print the results (Advanced)\n",
|
| 805 |
-
"list_size = 1000 # @param {type:'number'}\n",
|
| 806 |
-
"start_at_index = 0 # @param {type:'number'}\n",
|
| 807 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 808 |
-
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
| 809 |
-
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
| 810 |
-
"compact_Output = True # @param {type:\"boolean\"}\n",
|
| 811 |
-
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
| 812 |
-
"\n",
|
| 813 |
-
"import random\n",
|
| 814 |
-
"# @markdown -----------\n",
|
| 815 |
-
"# @markdown Mix with...\n",
|
| 816 |
-
"list_size2 = 1000 # @param {type:'number'}\n",
|
| 817 |
-
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
| 818 |
-
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 819 |
-
"\n",
|
| 820 |
-
"# @markdown -----------\n",
|
| 821 |
-
"# @markdown Repeat output N times\n",
|
| 822 |
-
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 823 |
-
"\n",
|
| 824 |
-
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 825 |
-
"RANGE = list_size\n",
|
| 826 |
-
"separator = '|'\n",
|
| 827 |
-
"if newline_Separator : separator = separator + '\\n'\n",
|
| 828 |
-
"\n",
|
| 829 |
-
"_prompts = ''\n",
|
| 830 |
-
"_sims = ''\n",
|
| 831 |
-
"for _index in range(start_at_index + RANGE):\n",
|
| 832 |
-
" if _index < start_at_index : continue\n",
|
| 833 |
-
" index = indices[_index].item()\n",
|
| 834 |
-
"\n",
|
| 835 |
-
" prompt = prompts[f'{index}']\n",
|
| 836 |
-
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
| 837 |
-
"\n",
|
| 838 |
-
" #Remove duplicates\n",
|
| 839 |
-
" if _prompts.find(prompt + separator)<=-1:\n",
|
| 840 |
-
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
| 841 |
-
" #-------#\n",
|
| 842 |
-
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
| 843 |
-
" _prompts = _prompts + prompt + separator\n",
|
| 844 |
-
" #------#\n",
|
| 845 |
-
"#------#\n",
|
| 846 |
-
"__prompts = fix_bad_symbols(__prompts)\n",
|
| 847 |
-
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
| 848 |
-
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
| 849 |
-
"#------#\n",
|
| 850 |
-
"\n",
|
| 851 |
-
"if(not print_Prompts): __prompts = ''\n",
|
| 852 |
-
"if(not print_Similarity): __sims = ''\n",
|
| 853 |
-
"\n",
|
| 854 |
-
"if(not compact_Output):\n",
|
| 855 |
-
" if(print_Descriptions):\n",
|
| 856 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
| 857 |
-
" for i in range(N) : print(__prompts)\n",
|
| 858 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
| 859 |
-
" print('')\n",
|
| 860 |
-
" else:\n",
|
| 861 |
-
" for i in range(N) : print(__prompts)\n",
|
| 862 |
-
"else:\n",
|
| 863 |
-
" for i in range(N) : print(__prompts)\n",
|
| 864 |
-
"#-------#"
|
| 865 |
-
],
|
| 866 |
-
"metadata": {
|
| 867 |
-
"id": "EdBiAguJO9aX"
|
| 868 |
-
},
|
| 869 |
-
"execution_count": null,
|
| 870 |
-
"outputs": []
|
| 871 |
-
},
|
| 872 |
{
|
| 873 |
"cell_type": "code",
|
| 874 |
"source": [
|
|
|
|
| 412 |
"\n",
|
| 413 |
"#image_index = 0 # @param {type:'number'}\n",
|
| 414 |
"# @markdown 📥 Load the data (only required one time)\n",
|
| 415 |
+
"load_the_data = True # @param {type:\"boolean\"}\n",
|
| 416 |
"\n",
|
| 417 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
| 418 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
|
|
|
| 429 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
| 430 |
"\n",
|
| 431 |
"# @markdown Calculate most similiar items using above settings?\n",
|
| 432 |
+
"enable = False # @param {type:\"boolean\"}\n",
|
| 433 |
"\n",
|
| 434 |
"if (load_the_data):\n",
|
| 435 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
|
|
|
| 465 |
" # Get text features for user input\n",
|
| 466 |
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
| 467 |
" text_features_NEG = model.get_text_features(**inputs)\n",
|
| 468 |
+
" text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
|
| 469 |
"\n",
|
| 470 |
" # text-similarity\n",
|
| 471 |
+
" neg_sims = torch.matmul(text_tensor, text_features_NEG.t())\n",
|
| 472 |
" #------#\n",
|
| 473 |
"\n",
|
| 474 |
" # plus image-similarity\n",
|
|
|
|
| 476 |
"\n",
|
| 477 |
"\n",
|
| 478 |
" # minus NEG-similarity\n",
|
| 479 |
+
" sims = sims - strength*neg_sims\n",
|
| 480 |
"\n",
|
| 481 |
" # Sort the items\n",
|
| 482 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
|
|
|
| 553 |
"execution_count": null,
|
| 554 |
"outputs": []
|
| 555 |
},
|
| 556 |
+
{
|
| 557 |
+
"cell_type": "code",
|
| 558 |
+
"source": [
|
| 559 |
+
"# @title ⚙️📝 Print the results (Advanced)\n",
|
| 560 |
+
"list_size = 1000 # @param {type:'number'}\n",
|
| 561 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
| 562 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 563 |
+
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
| 564 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
| 565 |
+
"compact_Output = True # @param {type:\"boolean\"}\n",
|
| 566 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
| 567 |
+
"\n",
|
| 568 |
+
"import random\n",
|
| 569 |
+
"# @markdown -----------\n",
|
| 570 |
+
"# @markdown Mix with...\n",
|
| 571 |
+
"list_size2 = 1000 # @param {type:'number'}\n",
|
| 572 |
+
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
| 573 |
+
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 574 |
+
"\n",
|
| 575 |
+
"# @markdown -----------\n",
|
| 576 |
+
"# @markdown Repeat output N times\n",
|
| 577 |
+
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 578 |
+
"\n",
|
| 579 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 580 |
+
"RANGE = list_size\n",
|
| 581 |
+
"separator = '|'\n",
|
| 582 |
+
"if newline_Separator : separator = separator + '\\n'\n",
|
| 583 |
+
"\n",
|
| 584 |
+
"_prompts = ''\n",
|
| 585 |
+
"_sims = ''\n",
|
| 586 |
+
"for _index in range(start_at_index + RANGE):\n",
|
| 587 |
+
" if _index < start_at_index : continue\n",
|
| 588 |
+
" index = indices[_index].item()\n",
|
| 589 |
+
"\n",
|
| 590 |
+
" prompt = prompts[f'{index}']\n",
|
| 591 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
| 592 |
+
"\n",
|
| 593 |
+
" #Remove duplicates\n",
|
| 594 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
| 595 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
| 596 |
+
" #-------#\n",
|
| 597 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
| 598 |
+
" _prompts = _prompts + prompt + separator\n",
|
| 599 |
+
" #------#\n",
|
| 600 |
+
"#------#\n",
|
| 601 |
+
"__prompts = fix_bad_symbols(__prompts)\n",
|
| 602 |
+
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
| 603 |
+
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
| 604 |
+
"#------#\n",
|
| 605 |
+
"\n",
|
| 606 |
+
"if(not print_Prompts): __prompts = ''\n",
|
| 607 |
+
"if(not print_Similarity): __sims = ''\n",
|
| 608 |
+
"\n",
|
| 609 |
+
"if(not compact_Output):\n",
|
| 610 |
+
" if(print_Descriptions):\n",
|
| 611 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
| 612 |
+
" for i in range(N) : print(__prompts)\n",
|
| 613 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
| 614 |
+
" print('')\n",
|
| 615 |
+
" else:\n",
|
| 616 |
+
" for i in range(N) : print(__prompts)\n",
|
| 617 |
+
"else:\n",
|
| 618 |
+
" for i in range(N) : print(__prompts)\n",
|
| 619 |
+
"#-------#"
|
| 620 |
+
],
|
| 621 |
+
"metadata": {
|
| 622 |
+
"id": "EdBiAguJO9aX"
|
| 623 |
+
},
|
| 624 |
+
"execution_count": null,
|
| 625 |
+
"outputs": []
|
| 626 |
+
},
|
| 627 |
{
|
| 628 |
"cell_type": "markdown",
|
| 629 |
"source": [
|
|
|
|
| 869 |
"execution_count": null,
|
| 870 |
"outputs": []
|
| 871 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 872 |
{
|
| 873 |
"cell_type": "code",
|
| 874 |
"source": [
|