Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
ADDED
|
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"cellView": "form",
|
| 22 |
+
"id": "UEYEdzjgOEOE"
|
| 23 |
+
},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"# @title ✳️ Load/initialize values\n",
|
| 27 |
+
"#Imports\n",
|
| 28 |
+
"#!pip install safetensors\n",
|
| 29 |
+
"from safetensors.torch import load_file\n",
|
| 30 |
+
"import json , os , shelve , torch\n",
|
| 31 |
+
"import pandas as pd\n",
|
| 32 |
+
"#----#\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"def my_mkdirs(folder):\n",
|
| 35 |
+
" if os.path.exists(folder)==False:\n",
|
| 36 |
+
" os.makedirs(folder)\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"def fix_bad_symbols(txt):\n",
|
| 39 |
+
" result = txt\n",
|
| 40 |
+
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
|
| 41 |
+
" result = result.replace(symbol,'\\\\' + symbol)\n",
|
| 42 |
+
" #------#\n",
|
| 43 |
+
" return result;\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"def getPrompts(_path, separator):\n",
|
| 47 |
+
"\n",
|
| 48 |
+
" path = _path + '/text'\n",
|
| 49 |
+
" path_enc = _path + '/text_encodings'\n",
|
| 50 |
+
" #-----#\n",
|
| 51 |
+
" index = 0\n",
|
| 52 |
+
" file_index = 0\n",
|
| 53 |
+
" prompts = {}\n",
|
| 54 |
+
" text_encodings = {}\n",
|
| 55 |
+
" _text_encodings = {}\n",
|
| 56 |
+
" #-----#\n",
|
| 57 |
+
" for filename in os.listdir(f'{path}'):\n",
|
| 58 |
+
"\n",
|
| 59 |
+
" print(f'reading {filename}....')\n",
|
| 60 |
+
" _index = 0\n",
|
| 61 |
+
" %cd {path}\n",
|
| 62 |
+
" with open(f'{filename}', 'r') as f:\n",
|
| 63 |
+
" data = json.load(f)\n",
|
| 64 |
+
" #------#\n",
|
| 65 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 66 |
+
" _prompts = {\n",
|
| 67 |
+
" key : value for key, value in _df.items()\n",
|
| 68 |
+
" }\n",
|
| 69 |
+
" for key in _prompts:\n",
|
| 70 |
+
" _index = int(key)\n",
|
| 71 |
+
" value = _prompts[key]\n",
|
| 72 |
+
"\n",
|
| 73 |
+
" #Read the 'header' file in the JSON\n",
|
| 74 |
+
" if _index <= 0 :\n",
|
| 75 |
+
" _NUM_ITEMS = int(value)\n",
|
| 76 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
| 77 |
+
" index = index + 1\n",
|
| 78 |
+
" continue\n",
|
| 79 |
+
" if _index <= 1 :\n",
|
| 80 |
+
" _file_name = f'{value}'\n",
|
| 81 |
+
" %cd {path_enc}\n",
|
| 82 |
+
" _text_encodings = load_file(f'{_file_name}.safetensors')\n",
|
| 83 |
+
" #Store text_encodings for the header items\n",
|
| 84 |
+
" text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
|
| 85 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
| 86 |
+
" #------#\n",
|
| 87 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
| 88 |
+
" index = index + 1\n",
|
| 89 |
+
" continue\n",
|
| 90 |
+
" #------#\n",
|
| 91 |
+
" #Read the text_encodings + prompts\n",
|
| 92 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
| 93 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
| 94 |
+
" index = index + 1\n",
|
| 95 |
+
" continue\n",
|
| 96 |
+
" #-------#\n",
|
| 97 |
+
" #--------#\n",
|
| 98 |
+
" #_text_encodings.close() #close the text_encodings file\n",
|
| 99 |
+
" file_index = file_index + 1\n",
|
| 100 |
+
" #----------#\n",
|
| 101 |
+
" NUM_ITEMS = index -1\n",
|
| 102 |
+
" return prompts , text_encodings , NUM_ITEMS\n",
|
| 103 |
+
"#--------#\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"def append_from_url(dictA, tensA , nA , url , separator):\n",
|
| 106 |
+
" dictB , tensB, nB = getPrompts(url, separator)\n",
|
| 107 |
+
" dictAB = dictA\n",
|
| 108 |
+
" tensAB = tensA\n",
|
| 109 |
+
" nAB = nA\n",
|
| 110 |
+
" for key in dictB:\n",
|
| 111 |
+
" nAB = nAB + 1\n",
|
| 112 |
+
" dictAB[f'{nA + int(key)}'] = dictB[key]\n",
|
| 113 |
+
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
|
| 114 |
+
" #-----#\n",
|
| 115 |
+
" return dictAB, tensAB , nAB-1\n",
|
| 116 |
+
"#-------#\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"home_directory = '/content/'\n",
|
| 119 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
| 120 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
| 121 |
+
"%cd {home_directory}\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"#🔸🔹\n",
|
| 124 |
+
"# Load the data if not already loaded\n",
|
| 125 |
+
"try:\n",
|
| 126 |
+
" loaded\n",
|
| 127 |
+
"except:\n",
|
| 128 |
+
" %cd {home_directory}\n",
|
| 129 |
+
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
| 130 |
+
" loaded = True\n",
|
| 131 |
+
"#--------#\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"#default NEG values\n",
|
| 134 |
+
"try: name_NEG\n",
|
| 135 |
+
"except: name_NEG = ''\n",
|
| 136 |
+
"try: image_NEG\n",
|
| 137 |
+
"except: image_NEG = ''\n",
|
| 138 |
+
"try: strength_image_NEG\n",
|
| 139 |
+
"except: strength_image_NEG = 1\n",
|
| 140 |
+
"try: strength_NEG\n",
|
| 141 |
+
"except: strength_NEG = 1\n",
|
| 142 |
+
"try: NUM_VOCAB_ITEMS\n",
|
| 143 |
+
"except: NUM_VOCAB_ITEMS = 0\n",
|
| 144 |
+
"try: using_NEG\n",
|
| 145 |
+
"except: using_NEG = False\n",
|
| 146 |
+
"try: using_image_NEG\n",
|
| 147 |
+
"except: using_image_NEG = False\n",
|
| 148 |
+
"#------#\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"def getJSON(path , filename):\n",
|
| 151 |
+
" %cd {path}\n",
|
| 152 |
+
" with open(f'{filename}', 'r') as f:\n",
|
| 153 |
+
" data = json.load(f)\n",
|
| 154 |
+
" #------#\n",
|
| 155 |
+
" print(f'reading {filename}....')\n",
|
| 156 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 157 |
+
" _prompts = {\n",
|
| 158 |
+
" key : value for key, value in _df.items()\n",
|
| 159 |
+
" }\n",
|
| 160 |
+
" return _prompts\n",
|
| 161 |
+
"\n",
|
| 162 |
+
"#----#\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"def getPromptsAndLinks(_path):\n",
|
| 165 |
+
" path = _path + '/text'\n",
|
| 166 |
+
" path_enc = _path + '/text_encodings'\n",
|
| 167 |
+
" #-----#\n",
|
| 168 |
+
" path_images = _path + '/images'\n",
|
| 169 |
+
" path_enc_images = _path + '/image_encodings'\n",
|
| 170 |
+
" #----#\n",
|
| 171 |
+
" _file_name = ''\n",
|
| 172 |
+
" _file_name_image = ''\n",
|
| 173 |
+
" #-----#\n",
|
| 174 |
+
" index = 0\n",
|
| 175 |
+
" prompts = {}\n",
|
| 176 |
+
" _prompts = {}\n",
|
| 177 |
+
" #-------#\n",
|
| 178 |
+
" urls = {}\n",
|
| 179 |
+
" _urls = {}\n",
|
| 180 |
+
" #------#\n",
|
| 181 |
+
" text_encodings = {}\n",
|
| 182 |
+
" _text_encodings = {}\n",
|
| 183 |
+
" image_encodings = {}\n",
|
| 184 |
+
" _image_encodings = {}\n",
|
| 185 |
+
" #-----#\n",
|
| 186 |
+
" for filename in os.listdir(f'{path}'):\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" print(f'reading {filename}.json...')\n",
|
| 189 |
+
" _index = 0\n",
|
| 190 |
+
" %cd {path}\n",
|
| 191 |
+
" with open(f'{filename}', 'r') as f:\n",
|
| 192 |
+
" data = json.load(f)\n",
|
| 193 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 194 |
+
" _prompts = {\n",
|
| 195 |
+
" key : value for key, value in _df.items()\n",
|
| 196 |
+
" }\n",
|
| 197 |
+
"\n",
|
| 198 |
+
" for key in _prompts:\n",
|
| 199 |
+
" _index = int(key)\n",
|
| 200 |
+
" value = _prompts[key]\n",
|
| 201 |
+
" if _index<=0: continue\n",
|
| 202 |
+
" if _index<=1:\n",
|
| 203 |
+
" _file_name = f'{value}'\n",
|
| 204 |
+
" _file_name_images = _prompts[f'{0}']\n",
|
| 205 |
+
" #-------#\n",
|
| 206 |
+
" print(f'reading {_file_name_images}.json..')\n",
|
| 207 |
+
" %cd {path_images}\n",
|
| 208 |
+
" with open(f'{_file_name_images}.json', 'r') as f:\n",
|
| 209 |
+
" data = json.load(f)\n",
|
| 210 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 211 |
+
" _urls = {\n",
|
| 212 |
+
" key : value for key, value in _df.items()\n",
|
| 213 |
+
" }\n",
|
| 214 |
+
" #--------#\n",
|
| 215 |
+
" %cd {path_enc}\n",
|
| 216 |
+
" _text_encodings = load_file(f'{_file_name}.safetensors')\n",
|
| 217 |
+
" text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
|
| 218 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
| 219 |
+
" #-------#\n",
|
| 220 |
+
" %cd {path_enc_images}\n",
|
| 221 |
+
" _image_encodings = load_file(f'{_file_name_images}.safetensors')\n",
|
| 222 |
+
" image_encodings[f'{index-1}'] = _image_encodings[f'{_index-1}']\n",
|
| 223 |
+
" image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n",
|
| 224 |
+
" #-------#\n",
|
| 225 |
+
" prompts[f'{index-1}'] = _prompts[f'{_index-1}']\n",
|
| 226 |
+
" urls[f'{index-1}'] = _urls[f'{_index-1}']\n",
|
| 227 |
+
" prompts[f'{index}'] = _prompts[f'{_index}']\n",
|
| 228 |
+
" urls[f'{index}'] = _urls[f'{_index}']\n",
|
| 229 |
+
" #-------#\n",
|
| 230 |
+
" index = index + 1\n",
|
| 231 |
+
" continue\n",
|
| 232 |
+
" #--------#\n",
|
| 233 |
+
" #Read the text_encodings + prompts\n",
|
| 234 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
| 235 |
+
" image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n",
|
| 236 |
+
" prompts[f'{index}'] = _prompts[f'{_index}']\n",
|
| 237 |
+
" urls[f'{index}'] = _urls[f'{_index}']\n",
|
| 238 |
+
" index = index + 1\n",
|
| 239 |
+
" continue\n",
|
| 240 |
+
" #-------#\n",
|
| 241 |
+
" #--------#\n",
|
| 242 |
+
" #----------#\n",
|
| 243 |
+
" NUM_ITEMS = index -1\n",
|
| 244 |
+
" return prompts , text_encodings , urls , image_encodings , NUM_ITEMS\n",
|
| 245 |
+
"#--------#\n",
|
| 246 |
+
"\n"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"source": [
|
| 252 |
+
"# @title 📚 Select items to sample from\n",
|
| 253 |
+
"\n",
|
| 254 |
+
"prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"🦜\"}\n",
|
| 255 |
+
"civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
|
| 256 |
+
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
|
| 257 |
+
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
|
| 258 |
+
"emojis = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
|
| 259 |
+
"#------#\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
|
| 262 |
+
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
|
| 263 |
+
"full_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
|
| 264 |
+
"celebs = False # @param {\"type\":\"boolean\",\"placeholder\":\"🆔👨\"}\n",
|
| 265 |
+
"#-------#\n",
|
| 266 |
+
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎀\"}\n",
|
| 267 |
+
"lyrics = False # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
|
| 268 |
+
"tripple_nouns = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
|
| 269 |
+
"#-----#\n",
|
| 270 |
+
"female_fullnames = False # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
|
| 271 |
+
"debug = False\n",
|
| 272 |
+
"#------#\n",
|
| 273 |
+
"prompts = {}\n",
|
| 274 |
+
"text_encodings = {}\n",
|
| 275 |
+
"nA = 0\n",
|
| 276 |
+
"#--------#\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"if tripple_nouns:\n",
|
| 280 |
+
" url = '/content/text-to-image-prompts/nouns'\n",
|
| 281 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"if lyrics:\n",
|
| 284 |
+
" url = '/content/text-to-image-prompts/lyrics'\n",
|
| 285 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"if danbooru_tags:\n",
|
| 288 |
+
" url = '/content/text-to-image-prompts/danbooru'\n",
|
| 289 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 290 |
+
"#--------#\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"if first_names:\n",
|
| 293 |
+
" url = '/content/text-to-image-prompts/names/firstnames'\n",
|
| 294 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 295 |
+
"#--------#\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"if last_names:\n",
|
| 298 |
+
" url = '/content/text-to-image-prompts/names/lastnames'\n",
|
| 299 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 300 |
+
"#--------#\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"if full_names:\n",
|
| 303 |
+
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
| 304 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 305 |
+
"#--------#\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"if celebs:\n",
|
| 308 |
+
" url = '/content/text-to-image-prompts/names/celebs/mixed'\n",
|
| 309 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 310 |
+
"#--------#\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"if celebs_young :\n",
|
| 313 |
+
" url = '/content/text-to-image-prompts/names/celebs/young'\n",
|
| 314 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 315 |
+
"#--------#\n",
|
| 316 |
+
"\n",
|
| 317 |
+
"if female_fullnames:\n",
|
| 318 |
+
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
| 319 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 320 |
+
"#--------#\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"if prompt_features:\n",
|
| 324 |
+
" url = '/content/text-to-image-prompts/civitai-prompts/green'\n",
|
| 325 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 326 |
+
"#--------#\n",
|
| 327 |
+
"\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"if emojis:\n",
|
| 330 |
+
" url = '/content/text-to-image-prompts/vocab/text_encodings/emoji'\n",
|
| 331 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 332 |
+
"#--------#\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"\n",
|
| 335 |
+
"if civitai_blue_set:\n",
|
| 336 |
+
" url = '/content/text-to-image-prompts/civitai-prompts/blue'\n",
|
| 337 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 338 |
+
"#--------#\n",
|
| 339 |
+
"\n",
|
| 340 |
+
"if suffix :\n",
|
| 341 |
+
" tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n",
|
| 342 |
+
" for item in ['common','average','rare','weird','exotic'] :\n",
|
| 343 |
+
" url = tmp + item\n",
|
| 344 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
| 345 |
+
"#------#\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"if prefix :\n",
|
| 348 |
+
" tmp = '/content/text-to-image-prompts/vocab/text_encodings/prefix/'\n",
|
| 349 |
+
" for item in ['common','average','rare','weird','exotic'] :\n",
|
| 350 |
+
" url = tmp + item\n",
|
| 351 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '-')\n",
|
| 352 |
+
"#------#\n",
|
| 353 |
+
"\n",
|
| 354 |
+
"if debug:\n",
|
| 355 |
+
" index = 0\n",
|
| 356 |
+
" for key in prompts: index = index + 1\n",
|
| 357 |
+
" print(index)\n",
|
| 358 |
+
" index = 0\n",
|
| 359 |
+
" for key in text_encodings : index = index + 1\n",
|
| 360 |
+
" print(index)\n",
|
| 361 |
+
"#------#\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"NUM_VOCAB_ITEMS = nA\n",
|
| 364 |
+
"text_tensor = torch.zeros(NUM_VOCAB_ITEMS,768)\n",
|
| 365 |
+
"for index in range(NUM_VOCAB_ITEMS):\n",
|
| 366 |
+
" text_tensor[index] = text_encodings[f'{index}']\n",
|
| 367 |
+
"#---------#\n"
|
| 368 |
+
],
|
| 369 |
+
"metadata": {
|
| 370 |
+
"cellView": "form",
|
| 371 |
+
"id": "CF53WIAKObg3"
|
| 372 |
+
},
|
| 373 |
+
"execution_count": null,
|
| 374 |
+
"outputs": []
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"source": [
|
| 379 |
+
"# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"\n",
|
| 382 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
| 383 |
+
"# @markdown 📥 Load the data (only required one time)\n",
|
| 384 |
+
"load_the_data = False # @param {type:\"boolean\"}\n",
|
| 385 |
+
"\n",
|
| 386 |
+
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
| 387 |
+
"index = 829 # @param {type:\"slider\", min:0, max:1668, step:1}\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"# @markdown ⚖️ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
|
| 394 |
+
"\n",
|
| 395 |
+
"NEG = '' # @param {type:'string'}\n",
|
| 396 |
+
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
| 397 |
+
"\n",
|
| 398 |
+
"# @markdown Calculate most similiar items using above settings?\n",
|
| 399 |
+
"enable = True # @param {type:\"boolean\"}\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"if (load_the_data):\n",
|
| 402 |
+
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
| 403 |
+
" from transformers import AutoTokenizer\n",
|
| 404 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 405 |
+
" from transformers import CLIPProcessor, CLIPModel\n",
|
| 406 |
+
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 407 |
+
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 408 |
+
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"from PIL import Image\n",
|
| 411 |
+
"import requests\n",
|
| 412 |
+
"prompt = target_prompts[f'{index}']\n",
|
| 413 |
+
"url = urls[f'{index}']\n",
|
| 414 |
+
"if url.find('perchance')>-1:\n",
|
| 415 |
+
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
| 416 |
+
"else: print(\"(No image for this ID)\")\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"print(\"\")\n",
|
| 419 |
+
"print(f\"'{prompt}'\")\n",
|
| 420 |
+
"print(\"\")\n",
|
| 421 |
+
"\n",
|
| 422 |
+
"if(enable):\n",
|
| 423 |
+
" text_features_A = target_text_encodings[f'{index}']\n",
|
| 424 |
+
" image_features_A = target_image_encodings[f'{index}']\n",
|
| 425 |
+
"\n",
|
| 426 |
+
" # text-similarity\n",
|
| 427 |
+
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
|
| 428 |
+
"\n",
|
| 429 |
+
" neg_sims = 0*sims\n",
|
| 430 |
+
" if(NEG != ''):\n",
|
| 431 |
+
"\n",
|
| 432 |
+
" # Get text features for user input\n",
|
| 433 |
+
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
| 434 |
+
" text_features_NEG = model.get_text_features(**inputs)\n",
|
| 435 |
+
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 436 |
+
"\n",
|
| 437 |
+
" # text-similarity\n",
|
| 438 |
+
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
|
| 439 |
+
" #------#\n",
|
| 440 |
+
"\n",
|
| 441 |
+
" # plus image-similarity\n",
|
| 442 |
+
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"\n",
|
| 445 |
+
" # minus NEG-similarity\n",
|
| 446 |
+
" sims = sims - neg_sims\n",
|
| 447 |
+
"\n",
|
| 448 |
+
" # Sort the items\n",
|
| 449 |
+
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
| 450 |
+
"\n",
|
| 451 |
+
" # @title ⚙️📝 Print the results (Advanced)\n",
|
| 452 |
+
" list_size = 1000 # param {type:'number'}\n",
|
| 453 |
+
" start_at_index = 0 # param {type:'number'}\n",
|
| 454 |
+
" print_Similarity = True # param {type:\"boolean\"}\n",
|
| 455 |
+
" print_Prompts = True # param {type:\"boolean\"}\n",
|
| 456 |
+
" print_Prefix = True # param {type:\"boolean\"}\n",
|
| 457 |
+
" print_Descriptions = True # param {type:\"boolean\"}\n",
|
| 458 |
+
" compact_Output = True # param {type:\"boolean\"}\n",
|
| 459 |
+
"\n",
|
| 460 |
+
" # @markdown -----------\n",
|
| 461 |
+
" # @markdown ⚙️📝 Printing options\n",
|
| 462 |
+
" newline_Separator = True # @param {type:\"boolean\"}\n",
|
| 463 |
+
"\n",
|
| 464 |
+
" import random\n",
|
| 465 |
+
" list_size2 = 1000 # param {type:'number'}\n",
|
| 466 |
+
" start_at_index2 = 10000 # param {type:'number'}\n",
|
| 467 |
+
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 468 |
+
"\n",
|
| 469 |
+
" # @markdown Repeat output N times\n",
|
| 470 |
+
" N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 471 |
+
"\n",
|
| 472 |
+
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 473 |
+
" RANGE = list_size\n",
|
| 474 |
+
" separator = '|'\n",
|
| 475 |
+
" if newline_Separator : separator = separator + '\\n'\n",
|
| 476 |
+
"\n",
|
| 477 |
+
" _prompts = ''\n",
|
| 478 |
+
" _sims = ''\n",
|
| 479 |
+
" for _index in range(start_at_index + RANGE):\n",
|
| 480 |
+
" if _index < start_at_index : continue\n",
|
| 481 |
+
" index = indices[_index].item()\n",
|
| 482 |
+
"\n",
|
| 483 |
+
" prompt = prompts[f'{index}']\n",
|
| 484 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
| 485 |
+
"\n",
|
| 486 |
+
" #Remove duplicates\n",
|
| 487 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
| 488 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
| 489 |
+
" #-------#\n",
|
| 490 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
| 491 |
+
" _prompts = _prompts + prompt + separator\n",
|
| 492 |
+
" #------#\n",
|
| 493 |
+
" #------#\n",
|
| 494 |
+
" __prompts = fix_bad_symbols(__prompts)\n",
|
| 495 |
+
" __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
| 496 |
+
" __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
| 497 |
+
" #------#\n",
|
| 498 |
+
"\n",
|
| 499 |
+
" if(not print_Prompts): __prompts = ''\n",
|
| 500 |
+
" if(not print_Similarity): __sims = ''\n",
|
| 501 |
+
"\n",
|
| 502 |
+
" if(not compact_Output):\n",
|
| 503 |
+
" if(print_Descriptions):\n",
|
| 504 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
| 505 |
+
" for i in range(N) : print(__prompts)\n",
|
| 506 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
| 507 |
+
" print('')\n",
|
| 508 |
+
" else:\n",
|
| 509 |
+
" for i in range(N) : print(__prompts)\n",
|
| 510 |
+
" else:\n",
|
| 511 |
+
" for i in range(N) : print(__prompts)\n",
|
| 512 |
+
" #-------#\n",
|
| 513 |
+
" #-------#\n",
|
| 514 |
+
"#-------#\n",
|
| 515 |
+
"image\n"
|
| 516 |
+
],
|
| 517 |
+
"metadata": {
|
| 518 |
+
"cellView": "form",
|
| 519 |
+
"id": "XW3914T8O2uf"
|
| 520 |
+
},
|
| 521 |
+
"execution_count": null,
|
| 522 |
+
"outputs": []
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"cell_type": "code",
|
| 526 |
+
"source": [
|
| 527 |
+
"# @title ⚙️📝 Print the results (Advanced)\n",
|
| 528 |
+
"list_size = 1000 # @param {type:'number'}\n",
|
| 529 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
| 530 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 531 |
+
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
| 532 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
| 533 |
+
"compact_Output = True # @param {type:\"boolean\"}\n",
|
| 534 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
| 535 |
+
"\n",
|
| 536 |
+
"import random\n",
|
| 537 |
+
"# @markdown -----------\n",
|
| 538 |
+
"# @markdown Mix with...\n",
|
| 539 |
+
"list_size2 = 1000 # @param {type:'number'}\n",
|
| 540 |
+
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
| 541 |
+
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 542 |
+
"\n",
|
| 543 |
+
"# @markdown -----------\n",
|
| 544 |
+
"# @markdown Repeat output N times\n",
|
| 545 |
+
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 546 |
+
"\n",
|
| 547 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 548 |
+
"RANGE = list_size\n",
|
| 549 |
+
"separator = '|'\n",
|
| 550 |
+
"if newline_Separator : separator = separator + '\\n'\n",
|
| 551 |
+
"\n",
|
| 552 |
+
"_prompts = ''\n",
|
| 553 |
+
"_sims = ''\n",
|
| 554 |
+
"for _index in range(start_at_index + RANGE):\n",
|
| 555 |
+
" if _index < start_at_index : continue\n",
|
| 556 |
+
" index = indices[_index].item()\n",
|
| 557 |
+
"\n",
|
| 558 |
+
" prompt = prompts[f'{index}']\n",
|
| 559 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
| 560 |
+
"\n",
|
| 561 |
+
" #Remove duplicates\n",
|
| 562 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
| 563 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
| 564 |
+
" #-------#\n",
|
| 565 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
| 566 |
+
" _prompts = _prompts + prompt + separator\n",
|
| 567 |
+
" #------#\n",
|
| 568 |
+
"#------#\n",
|
| 569 |
+
"__prompts = fix_bad_symbols(__prompts)\n",
|
| 570 |
+
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
| 571 |
+
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
| 572 |
+
"#------#\n",
|
| 573 |
+
"\n",
|
| 574 |
+
"if(not print_Prompts): __prompts = ''\n",
|
| 575 |
+
"if(not print_Similarity): __sims = ''\n",
|
| 576 |
+
"\n",
|
| 577 |
+
"if(not compact_Output):\n",
|
| 578 |
+
" if(print_Descriptions):\n",
|
| 579 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
| 580 |
+
" for i in range(N) : print(__prompts)\n",
|
| 581 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
| 582 |
+
" print('')\n",
|
| 583 |
+
" else:\n",
|
| 584 |
+
" for i in range(N) : print(__prompts)\n",
|
| 585 |
+
"else:\n",
|
| 586 |
+
" for i in range(N) : print(__prompts)\n",
|
| 587 |
+
"#-------#"
|
| 588 |
+
],
|
| 589 |
+
"metadata": {
|
| 590 |
+
"cellView": "form",
|
| 591 |
+
"id": "EdBiAguJO9aX"
|
| 592 |
+
},
|
| 593 |
+
"execution_count": null,
|
| 594 |
+
"outputs": []
|
| 595 |
+
}
|
| 596 |
+
]
|
| 597 |
+
}
|