Upload results for model HuggingFaceH4/zephyr-7b-beta (#52)
Browse files- Upload results for model HuggingFaceH4/zephyr-7b-beta (c7489cadc107f17ff03d7be4a28d88336a1639a1)
    	
        data/HuggingFaceH4/zephyr-7b-beta/cot/24-03-17-13:58:51_idx25.json
    ADDED
    
    | @@ -0,0 +1,212 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "results": {
         | 
| 3 | 
            +
                "esse-natus-1527_logiqa2_cot": {
         | 
| 4 | 
            +
                  "acc,none": 0.3842239185750636,
         | 
| 5 | 
            +
                  "acc_stderr,none": 0.012272004722830732,
         | 
| 6 | 
            +
                  "alias": "esse-natus-1527_logiqa2_cot"
         | 
| 7 | 
            +
                },
         | 
| 8 | 
            +
                "esse-natus-1527_logiqa_cot": {
         | 
| 9 | 
            +
                  "acc,none": 0.31150159744408945,
         | 
| 10 | 
            +
                  "acc_stderr,none": 0.018524291176025814,
         | 
| 11 | 
            +
                  "alias": "esse-natus-1527_logiqa_cot"
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "esse-natus-1527_lsat-ar_cot": {
         | 
| 14 | 
            +
                  "acc,none": 0.2217391304347826,
         | 
| 15 | 
            +
                  "acc_stderr,none": 0.027451496604058916,
         | 
| 16 | 
            +
                  "alias": "esse-natus-1527_lsat-ar_cot"
         | 
| 17 | 
            +
                },
         | 
| 18 | 
            +
                "esse-natus-1527_lsat-lr_cot": {
         | 
| 19 | 
            +
                  "acc,none": 0.3352941176470588,
         | 
| 20 | 
            +
                  "acc_stderr,none": 0.020925162390233516,
         | 
| 21 | 
            +
                  "alias": "esse-natus-1527_lsat-lr_cot"
         | 
| 22 | 
            +
                },
         | 
| 23 | 
            +
                "esse-natus-1527_lsat-rc_cot": {
         | 
| 24 | 
            +
                  "acc,none": 0.43866171003717475,
         | 
| 25 | 
            +
                  "acc_stderr,none": 0.030311665540718367,
         | 
| 26 | 
            +
                  "alias": "esse-natus-1527_lsat-rc_cot"
         | 
| 27 | 
            +
                }
         | 
| 28 | 
            +
              },
         | 
| 29 | 
            +
              "configs": {
         | 
| 30 | 
            +
                "esse-natus-1527_logiqa2_cot": {
         | 
| 31 | 
            +
                  "task": "esse-natus-1527_logiqa2_cot",
         | 
| 32 | 
            +
                  "group": "logikon-bench",
         | 
| 33 | 
            +
                  "dataset_path": "cot-leaderboard/cot-eval-traces",
         | 
| 34 | 
            +
                  "dataset_kwargs": {
         | 
| 35 | 
            +
                    "data_files": {
         | 
| 36 | 
            +
                      "test": "esse-natus-1527-logiqa2/test-00000-of-00001.parquet"
         | 
| 37 | 
            +
                    }
         | 
| 38 | 
            +
                  },
         | 
| 39 | 
            +
                  "test_split": "test",
         | 
| 40 | 
            +
                  "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
         | 
| 41 | 
            +
                  "doc_to_target": "{{answer}}",
         | 
| 42 | 
            +
                  "doc_to_choice": "{{options}}",
         | 
| 43 | 
            +
                  "description": "",
         | 
| 44 | 
            +
                  "target_delimiter": " ",
         | 
| 45 | 
            +
                  "fewshot_delimiter": "\n\n",
         | 
| 46 | 
            +
                  "num_fewshot": 0,
         | 
| 47 | 
            +
                  "metric_list": [
         | 
| 48 | 
            +
                    {
         | 
| 49 | 
            +
                      "metric": "acc",
         | 
| 50 | 
            +
                      "aggregation": "mean",
         | 
| 51 | 
            +
                      "higher_is_better": true
         | 
| 52 | 
            +
                    }
         | 
| 53 | 
            +
                  ],
         | 
| 54 | 
            +
                  "output_type": "multiple_choice",
         | 
| 55 | 
            +
                  "repeats": 1,
         | 
| 56 | 
            +
                  "should_decontaminate": false,
         | 
| 57 | 
            +
                  "metadata": {
         | 
| 58 | 
            +
                    "version": 0.0
         | 
| 59 | 
            +
                  }
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "esse-natus-1527_logiqa_cot": {
         | 
| 62 | 
            +
                  "task": "esse-natus-1527_logiqa_cot",
         | 
| 63 | 
            +
                  "group": "logikon-bench",
         | 
| 64 | 
            +
                  "dataset_path": "cot-leaderboard/cot-eval-traces",
         | 
| 65 | 
            +
                  "dataset_kwargs": {
         | 
| 66 | 
            +
                    "data_files": {
         | 
| 67 | 
            +
                      "test": "esse-natus-1527-logiqa/test-00000-of-00001.parquet"
         | 
| 68 | 
            +
                    }
         | 
| 69 | 
            +
                  },
         | 
| 70 | 
            +
                  "test_split": "test",
         | 
| 71 | 
            +
                  "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
         | 
| 72 | 
            +
                  "doc_to_target": "{{answer}}",
         | 
| 73 | 
            +
                  "doc_to_choice": "{{options}}",
         | 
| 74 | 
            +
                  "description": "",
         | 
| 75 | 
            +
                  "target_delimiter": " ",
         | 
| 76 | 
            +
                  "fewshot_delimiter": "\n\n",
         | 
| 77 | 
            +
                  "num_fewshot": 0,
         | 
| 78 | 
            +
                  "metric_list": [
         | 
| 79 | 
            +
                    {
         | 
| 80 | 
            +
                      "metric": "acc",
         | 
| 81 | 
            +
                      "aggregation": "mean",
         | 
| 82 | 
            +
                      "higher_is_better": true
         | 
| 83 | 
            +
                    }
         | 
| 84 | 
            +
                  ],
         | 
| 85 | 
            +
                  "output_type": "multiple_choice",
         | 
| 86 | 
            +
                  "repeats": 1,
         | 
| 87 | 
            +
                  "should_decontaminate": false,
         | 
| 88 | 
            +
                  "metadata": {
         | 
| 89 | 
            +
                    "version": 0.0
         | 
| 90 | 
            +
                  }
         | 
| 91 | 
            +
                },
         | 
| 92 | 
            +
                "esse-natus-1527_lsat-ar_cot": {
         | 
| 93 | 
            +
                  "task": "esse-natus-1527_lsat-ar_cot",
         | 
| 94 | 
            +
                  "group": "logikon-bench",
         | 
| 95 | 
            +
                  "dataset_path": "cot-leaderboard/cot-eval-traces",
         | 
| 96 | 
            +
                  "dataset_kwargs": {
         | 
| 97 | 
            +
                    "data_files": {
         | 
| 98 | 
            +
                      "test": "esse-natus-1527-lsat-ar/test-00000-of-00001.parquet"
         | 
| 99 | 
            +
                    }
         | 
| 100 | 
            +
                  },
         | 
| 101 | 
            +
                  "test_split": "test",
         | 
| 102 | 
            +
                  "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
         | 
| 103 | 
            +
                  "doc_to_target": "{{answer}}",
         | 
| 104 | 
            +
                  "doc_to_choice": "{{options}}",
         | 
| 105 | 
            +
                  "description": "",
         | 
| 106 | 
            +
                  "target_delimiter": " ",
         | 
| 107 | 
            +
                  "fewshot_delimiter": "\n\n",
         | 
| 108 | 
            +
                  "num_fewshot": 0,
         | 
| 109 | 
            +
                  "metric_list": [
         | 
| 110 | 
            +
                    {
         | 
| 111 | 
            +
                      "metric": "acc",
         | 
| 112 | 
            +
                      "aggregation": "mean",
         | 
| 113 | 
            +
                      "higher_is_better": true
         | 
| 114 | 
            +
                    }
         | 
| 115 | 
            +
                  ],
         | 
| 116 | 
            +
                  "output_type": "multiple_choice",
         | 
| 117 | 
            +
                  "repeats": 1,
         | 
| 118 | 
            +
                  "should_decontaminate": false,
         | 
| 119 | 
            +
                  "metadata": {
         | 
| 120 | 
            +
                    "version": 0.0
         | 
| 121 | 
            +
                  }
         | 
| 122 | 
            +
                },
         | 
| 123 | 
            +
                "esse-natus-1527_lsat-lr_cot": {
         | 
| 124 | 
            +
                  "task": "esse-natus-1527_lsat-lr_cot",
         | 
| 125 | 
            +
                  "group": "logikon-bench",
         | 
| 126 | 
            +
                  "dataset_path": "cot-leaderboard/cot-eval-traces",
         | 
| 127 | 
            +
                  "dataset_kwargs": {
         | 
| 128 | 
            +
                    "data_files": {
         | 
| 129 | 
            +
                      "test": "esse-natus-1527-lsat-lr/test-00000-of-00001.parquet"
         | 
| 130 | 
            +
                    }
         | 
| 131 | 
            +
                  },
         | 
| 132 | 
            +
                  "test_split": "test",
         | 
| 133 | 
            +
                  "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
         | 
| 134 | 
            +
                  "doc_to_target": "{{answer}}",
         | 
| 135 | 
            +
                  "doc_to_choice": "{{options}}",
         | 
| 136 | 
            +
                  "description": "",
         | 
| 137 | 
            +
                  "target_delimiter": " ",
         | 
| 138 | 
            +
                  "fewshot_delimiter": "\n\n",
         | 
| 139 | 
            +
                  "num_fewshot": 0,
         | 
| 140 | 
            +
                  "metric_list": [
         | 
| 141 | 
            +
                    {
         | 
| 142 | 
            +
                      "metric": "acc",
         | 
| 143 | 
            +
                      "aggregation": "mean",
         | 
| 144 | 
            +
                      "higher_is_better": true
         | 
| 145 | 
            +
                    }
         | 
| 146 | 
            +
                  ],
         | 
| 147 | 
            +
                  "output_type": "multiple_choice",
         | 
| 148 | 
            +
                  "repeats": 1,
         | 
| 149 | 
            +
                  "should_decontaminate": false,
         | 
| 150 | 
            +
                  "metadata": {
         | 
| 151 | 
            +
                    "version": 0.0
         | 
| 152 | 
            +
                  }
         | 
| 153 | 
            +
                },
         | 
| 154 | 
            +
                "esse-natus-1527_lsat-rc_cot": {
         | 
| 155 | 
            +
                  "task": "esse-natus-1527_lsat-rc_cot",
         | 
| 156 | 
            +
                  "group": "logikon-bench",
         | 
| 157 | 
            +
                  "dataset_path": "cot-leaderboard/cot-eval-traces",
         | 
| 158 | 
            +
                  "dataset_kwargs": {
         | 
| 159 | 
            +
                    "data_files": {
         | 
| 160 | 
            +
                      "test": "esse-natus-1527-lsat-rc/test-00000-of-00001.parquet"
         | 
| 161 | 
            +
                    }
         | 
| 162 | 
            +
                  },
         | 
| 163 | 
            +
                  "test_split": "test",
         | 
| 164 | 
            +
                  "doc_to_text": "def doc_to_text_cot(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage. [Base your answer on the reasoning below.]\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n    \n    [Reasoning: <reasoning>]\n    \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\"    \n    prompt += \"Answer:\"\n    return prompt\n",
         | 
| 165 | 
            +
                  "doc_to_target": "{{answer}}",
         | 
| 166 | 
            +
                  "doc_to_choice": "{{options}}",
         | 
| 167 | 
            +
                  "description": "",
         | 
| 168 | 
            +
                  "target_delimiter": " ",
         | 
| 169 | 
            +
                  "fewshot_delimiter": "\n\n",
         | 
| 170 | 
            +
                  "num_fewshot": 0,
         | 
| 171 | 
            +
                  "metric_list": [
         | 
| 172 | 
            +
                    {
         | 
| 173 | 
            +
                      "metric": "acc",
         | 
| 174 | 
            +
                      "aggregation": "mean",
         | 
| 175 | 
            +
                      "higher_is_better": true
         | 
| 176 | 
            +
                    }
         | 
| 177 | 
            +
                  ],
         | 
| 178 | 
            +
                  "output_type": "multiple_choice",
         | 
| 179 | 
            +
                  "repeats": 1,
         | 
| 180 | 
            +
                  "should_decontaminate": false,
         | 
| 181 | 
            +
                  "metadata": {
         | 
| 182 | 
            +
                    "version": 0.0
         | 
| 183 | 
            +
                  }
         | 
| 184 | 
            +
                }
         | 
| 185 | 
            +
              },
         | 
| 186 | 
            +
              "versions": {
         | 
| 187 | 
            +
                "esse-natus-1527_logiqa2_cot": 0.0,
         | 
| 188 | 
            +
                "esse-natus-1527_logiqa_cot": 0.0,
         | 
| 189 | 
            +
                "esse-natus-1527_lsat-ar_cot": 0.0,
         | 
| 190 | 
            +
                "esse-natus-1527_lsat-lr_cot": 0.0,
         | 
| 191 | 
            +
                "esse-natus-1527_lsat-rc_cot": 0.0
         | 
| 192 | 
            +
              },
         | 
| 193 | 
            +
              "n-shot": {
         | 
| 194 | 
            +
                "esse-natus-1527_logiqa2_cot": 0,
         | 
| 195 | 
            +
                "esse-natus-1527_logiqa_cot": 0,
         | 
| 196 | 
            +
                "esse-natus-1527_lsat-ar_cot": 0,
         | 
| 197 | 
            +
                "esse-natus-1527_lsat-lr_cot": 0,
         | 
| 198 | 
            +
                "esse-natus-1527_lsat-rc_cot": 0
         | 
| 199 | 
            +
              },
         | 
| 200 | 
            +
              "config": {
         | 
| 201 | 
            +
                "model": "vllm",
         | 
| 202 | 
            +
                "model_args": "pretrained=HuggingFaceH4/zephyr-7b-beta,revision=main,dtype=bfloat16,tensor_parallel_size=1,gpu_memory_utilization=0.8,trust_remote_code=true,max_length=2048",
         | 
| 203 | 
            +
                "batch_size": "auto",
         | 
| 204 | 
            +
                "batch_sizes": [],
         | 
| 205 | 
            +
                "device": null,
         | 
| 206 | 
            +
                "use_cache": null,
         | 
| 207 | 
            +
                "limit": null,
         | 
| 208 | 
            +
                "bootstrap_iters": 100000,
         | 
| 209 | 
            +
                "gen_kwargs": null
         | 
| 210 | 
            +
              },
         | 
| 211 | 
            +
              "git_hash": "3cf3403"
         | 
| 212 | 
            +
            }
         |